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Abstract

The linear and quadratic discrimination functions based on normal theory are widely
used to classify an observation to one of predefined groups. But the discriminant
functions are sensitive to outliers. A high breakdown procedure to estimate location
and scatter of multivariate data is the minimum volume ellipsoid, or MVE estimator.
To obtain high breakdown classifiers, outliers in multivarate data are detected by
using the robust Mahalanobis distance based on MVE estimators, and the weighted
estimators are mnserted in the functions for classification. A small-sample Monte Carlo
study shows that the high breakdown robust procedures perform better than the
classical classifiers.

1. Introduction

The classical discriminant analysis based on normal theory has been widely used for the
classification of multivariate data to predefined groups. But the normal theory-based
classification rule is very sensitive to the presence of outliers. Moreover outliers in
multivariate data are hard to be detected. We thus want to investigate some robust classifiers
based on high breakdown point estimators of location and scatter.

To formulate the problem we assume that the ¢th population has normal distribution
N(e; %;), i=1,-,g, where p is the dimension of observation vector and g denotes the
number of groups. There are two main approaches to this problem. One is the linear
discriminant analysis (LDA), which arises when the covariance matrices are equal (ie.,
Y, =--=X_=2X%). The other approach is the quadratic discriminant analysis (QDA), which
is appropriate when the covariance matrices are not equal.

In the case of equal covariance matrices, the linear discriminant functions (LDF) are given
by
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di(x)=p, 3 'x— %/‘i,z'_lﬂi"’_ Inp;, i=1,", g, (1.1)

where p; is the prior probability of #; and X is the common covariance matrix. By
substituting g; and X in (1.1) with the sample means and the pooled sample covariance
matrix, the sample LDF & ;(x) are obtained. The classification rule based on sample LDF

classifies an observation x to m, if d,(x) is the largest of al(x),---,ag(x).

In the case of unequal covariance matrices, the quadratic discriminant functions (QDF) are
given by

dx) = — 5 (x=p) Z7x— ) = T WIZ ]+ p,, =12 A2

Again, by substituting the means and covariance matrices with sample estimators, the sample

QDF are obtained. The classification rule based on QDF allocates an observation x to ity if

df(x) is the largest of d%(x), -, di(x).

The derivation and properties of the LDF and QDF can be found in most textbooks on
multivariate analysis. See, for example, Johnson and Wichern (1992).

Randles, Broffitt, Ramberg and Hogg (1978a) proposed a rank procedure for the
two-population discriminant problem. They (1978b) also constructed new LDF and QDF by
using the Huber-type M-estimators of means and covariance matrices. Campbell (1980, 1982)
defined robust estimators of means and covariance matrices by downweighting the observation
that has a large Mahalanohis distance from its group mean. He also suggested a robust
discriminant procedure based on robust M-estimators.

Chork and Rousseeuw (1992) applied a high breakdown discriminant method based on
minimum  volume ellipsoid (MVE) estimator to the problem of exploration geochemistry.
Hawkins and McLachlan (1997) developed a high breakdown criterion for LDA, which is called
the minimum within-group covariance determinant criterion. Todorov, Nevkov and Neytchev
(1994) studied robust two-group discrimination methods based on GM-regression estimators
and MVE estimators through a Monte Carlo simulation. They mainly investigated the behavior
of the GM-estimators and concluded that some GM-classifiers perform well comparing to the
classical LDF. They also showed that the discrimination ability of the GM-classifier drastically
decreases in case of high level of contamination because of the low breakdown point (which
is at most 1/(p+1) ) of GM-estimators. To cope with this problem they proposed to use the
LDF based on MVE estimators in case of high contamination.

In this paper we want to investigate the behavior of the high breakdown classifiers based
on MVE-estimators, which were originally considered by Chork an Rousseeuw (1992) and

Todorov et al. (1994) in the two-group case.
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2. High Breakdown Classifiers

Given a data set X = {xl,'---, xn}, outliers can be detected by computing the squared
Mahalanobis distance
MD;= (x;— T(X)) (X)) Nx;,— T(X)) (2.1)
for each point x;, where 7(X) is the sample mean and C(X) is the sample covariance
matrix. But, since MD,; depends on sample mean and sample covariance matrix, it is not
robust. By replacing 7(X) and C(X) in (2.1) by robust estimators, we can robustify the
Mahalanobis distance MD;.

The most widely used high breakdown estimators of mean and covariance matrix are the
MVE estimators (for details see, e.g., Rousseeuw and Leroy, 1987). We denote by RD,; the

robust Mahalanobis distance, which is defined by inserting the MVE estimators for 7(X) and
C(X) in (2.1). Detection of outliers by using RD; was discussed in Rousseeuw and Leroy
(1987) and Rousseeuw and van Zomeren (1990).

In discrimination problem we have training data sets X, X, % in, from m;,
t=1,,8.Let T; and C; be the MVE estimators of location and scatter of the ith group.
That is, 77 is the center of the minimal volume ellipsoid covering at least half of the x;’s,

and C; is obtained from the ellisoid by multiplying a suitable factor (see, for example,

Rousseeuw and Leroy, Chapter 7, 1987). For each observation, define a weight as

where RD,-,—Z is the squared robust Mahalanobis distance obtained by using MVE estimators,
i.e.
RD A= (x j— T;)'C (% 4— Ty). (2.3)

Using these weights we compute the weighted sample means, weighted sample covariance
matrices and pooled sample covariance matnx as follows:

M= Jz:lw{j x5/ lew;j, i=1,-, g,
Si= B wilxy— M= M) I Zwi—1), i=1,-g
= 7=1

5= ?; glw%f(xff_Mf)(xﬁ“Mf)'/( ?:1 ﬁIW?j_g>.

To obtain robust classifiers, we insert these weighted means and covariance matrices instead
of g;, X, and X in the discriminant functions (1.1) and (1.2).

There are several types of weight functions. Campbell (1980) suggested some weight
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functions to obtain robust estimators of means and covariances. In this paper we consider two
types of weight functions defined as follows:
(i) Non-descending Huber’s form

1 if t= b,
w() = (2.4)
b/t if > b,

with 6= 2%(0.975, 5).
(i1) Redescending Hampel's form
1 if t< ¢,
w(h= (25)
—?exp[—%(tmc)z/bz] if ¢,
with ¢=[V (2p—1)+2.25]/V2 and b=1.25.

The weight function in (2.5) was considered by Todorov ef @l. (1994). It is the Campbell’s
function with redescending Hampel's form. The simulation study performed by Todorov et al.
(1994) shows that the redescending Campbell’s function behaves well for all levels of
contamnination. The weight function in (2.4) is similar to Campbell’'s function with

non-decreasing Huber’'s form, which was considered in Todorov et al. (1994). We use the
percentile of chi-squared distribution instead of the constant suggested by Campbell (1980).

3. A Small-Sample Monte Carlo Study

3.1 Simulation Design

To compare the behavior of robust classifiers with that of normal theory-based classifiers, a
small-sample Monte Carlo study was performed. The training samples were generated from
the e-contaminated normal distribution defined by

CN,(ke)=0—¢e)N g, 1I,) +eNSp, kL),
where k£(>1) is the variance inflation factor, & is the contamination fraction, and I, is the
pXp identity matrix. Generation of data from e-contaminated normal distribution means that
each observation comes from N,(u,1I,) with probability (1—e&) and from N, g, kl,) with
probahbility &. This contaminated distribution has heavier tails than normal

In the simulation study we considered 3-group discrimination problem (Z.e., g=3). The
data were generated in each of the combinations of the following design factors:

p=2,4; £=9,25,100
ny= ny= n3=25

e=0, 0.05, 0.10, 0.20, 0.30, 0.40
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The population means are as follows.
In the case p=2, g;=1(0,0)", p,=(3,0)", mz=(1.5,3V3/2)

In the case p=4 , ;=10(0,0,0,0)", #,=(3.0,0,0)", #3=(1.5,3V3/2,0,0)

The simulation was performed on a personal computer with a Pentium [T 450MHz processor
by using S-PLUS (version 4.0 for windows). The random numbers and normal variates were
generated by using the S-PLUS function runif and rmunorm, respectively. The MVE
estimators were computed by the S-PLUS function cov.mwe. For each combination of design

factors, test sets of size #n;=ny=n3=25 were generated from N,(g,1,), N(ps,1,), and

Ny(p3,1,) where p's are the same as those of training sets. This process were repeated
400 times. The misclassification probabilities were computed in each case and averaged over
400 replications. Thus the standard error of the estimated probabilities is about 0.0023 when
the misclassification probability is 0.2.

3.2 Simulation Result

The results of the simulation are summarized in Table 3.1 and 3.2. Table 3.1 shows the
results of LDA, and Table 3.2 the results of QDA. In each case of LDA and QDA three kinds
of contamination are considered. One is low contamination (£=9), another is moderate
contamination ( £=25), and the third is high contamination ( 2=100). In the table the
classifiers denote the following.

Classical : Normal theory-based classifier in (1.1) and (1.2)
Huber : Robust classifier with weight function of Huber’s form in (2.4)
Hampel : Robust classifier with weight function of Hampel's form in (2.5)

On the whole the performarce of high breakdown classifiers appears to be better than the
classical normal-theory based classifiers. When there is no contamination, the classical method
is slightly better than the robust method in LDA and QDA cases. But the differences are not
significant.

When the training sets are slightly contaminated ( 4=9), the Huber's form shows smaller
average probabhilities of misclassification than the other two classifiers in both of LDA and
QDA cases. In the case of moderate contamination ( 2=25) the behaviors of the Huber's
form and Hampel’s form are almost same. But in the case of highly contaminated traing sets
(k=100), the Hampel's form is better than the Huber’'s form in LDA. But in QDA with
p=4, both forms show almost equivalent behavior.

In most cases considered the high breakdown robust classifiers perform significantly better
than the classical classifiers, which is the same result as that of Todorov ef al. (1994).



230 Moon Sup Song, Young Joo Yoon and Youngjo Lee

Except in the case of extreme contamination, the Huber’'s form shows better performance than
the Hampel’s form.

Table 3.1 Average Probability of Misclassification LDF

( ny= ny= ny= 125, number of replication=400 )

=2 p=4

g  Classical Huber Hampel Classical Huber Hampel

00  0.1153# 0.1158 0.1158 0.1210= 01213 01221
k=9
005 01207 0.1181= 0.1190 0.1319 0.1256+  0.1280
0.1 0.1216 0.1178x 0.1187 0.1361 0.1278+  0.1300
0.2 0.1247 0.1226+ 0.1232 0.1455 0.1351*  0.1376
0.3 0.1293 0.1261% 0.1273 0.1489 0.1395+  0.1433
0.4 0.1347 0.1301* 0.1323 0.1553 0.1474+=  0.1548
k=25
005 01282 0.1180 0.1173x 0.1500 0.1256%  0.1262
0.1 0.1335 0.1193 0.1193+ 0.1599 0.1241  0.1237«
0.2 0.1426 0.1264 0.1252x 0.1740 0.1338  0.1329+
0.3 0.1488 0.1262+ 0.1263 0.1927 0.1493«  0.1531
04 0.1627 0.1385 0.1378+ 0.2070 0.1640+«  0.1756
k=100

0.05  0.1591 0.1155 0.1153= 0.2026 0.1282  0.1259+*
0.1 0.1732 0.1139 0.1125x 0.2292 0.1277  0.1274x
0.2 0.2178 0.1217 0.1182x 0.2753 0.1349  0.1325%
0.3 0.2658 0.1302 0.1267+ 0.3295 0.1501  0.1466+
04 0.3161 0.1683 0.1643+ 0.3833 0.2017+ 02084

(* lowest probability)
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Table 3.2 Average Probability of Misclassification QDF

(1= ny=n3=25, number of replication=400 )

=2 p=4

e Classical Huber Hampel Classical Huber Hampel

0.0  0.1209= 0.1218 0.1230 0.1378x 0.1417  0.1506
k=9
005 01270 0.1233# 0.1249 0.1554 0.1478+  0.1573
0.1 0.1298 0.1235+* 0.1261 0.1688 0.1532«  0.1668
0.2 0.1391 0.1293+ 0.1312 0.1904 0.1610«  0.1776
0.3 0.1473 0.1356= 0.1389 0.2057 0.1741*  0.1967
04 0.1599 0.1481= 0.1504 0.2188 01937+  0.2157
k=25
0.05 0.1408 0.1235x 0.1248 0.1742 0.1435+  0.1544
0.1 0.1594 0.1253= 0.1275 0.2150 0.1470=  0.1578
0.2 0.2012 0.1356 0.1340% 0.2801 0.1597=  0.1706
0.3 0.2412 0.1460 0.1424= 0.3344 0.1916%  (0.1998
0.4 0.2845 0.1917 0.1784x 0.3776 0.2387+  0.2412
k=100

0.05 0.1959 0.1215# 0.1215 0.2190 0.1484+«  (0.1539
0.1 0.2792 0.1209 0.1194x 0.3041 0.1511=  0.1569
0.2 0.4162 0.1310 0.1259% 0.4364 0.1594*  0.1658
0.3 0.4975 0.1584 0.1366+* 0.5275 0.1886  0.1802=
04 0.5382 0.2519 0.1860% 05745 0.2778  0.2328+

(+ lowest probability)
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