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ABSTRACT

Using regression methods based on quasi-likelihood equation, one
only needs to specify the conditional mean and variance functions for
the response variable in the analysis. In this paper, an omnibus lack-
of-fit test is proposed to test the validity of these two functions. Our
test is consistent against the alternative under which either the mean
or the variance is not the one specified in the null hypothesis. The
large-sample null distribution of our test statistic can be approximated
through simulations. Extensive numerical studies are performed to
demonstrate that the new test preserves the prescribed type I error
probability. Power comparisons are conducted to show the advantage
of the new proposal.

Key Words : Mean function; Pseudo-likelihood; Quasi-likelihood; Vari-
ance function.
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1. INTRODUCTION

Because of its flexibility, the method of quasi-likelihood (see McCullagh
and Nelder, 1989) for regression problems has become increasingly popular
among data analysts. Using this approach, one only needs to specify the
mean and variance functions for the response variable in the analysis. If the
mean function is correctly specified, valid inferences about the regression co-
efficients can be obtained. However, efficient estimation for these parameters
requires knowledge of the structure of the variance. Furthermore, oftentimes
estimation of the variance function is of independent interest (see Carroll and
Ruppert, 1988).

For generalized linear models, tests for the validity of the mean function
of the response variables are available in the literature (see, for example,
Pregibon, 1980, 1985; Tsiatis, 1980; Christensen, 1989; Cox, Koh, Wahba,
and Yandell, 1988; Su and Wei, 1991). However, as far as we know, there is
no general procedure available for testing the appropriateness of the variance
function without specifying particular alternative hypotheses.

In this paper, we propose an omnibus test for testing the adequacy of
the quasi-likelihood. Our test is consistent against the alternative under
which either the mean or the variance function is not the one specified in the
null hypothesis. The new procedure is asymptotically distribution-free in the
sense that its large-sample properties do not depend on a specific probabilistic
mechanism for the response variables. Moreover, if the global null hypothesis,
hypothesis specifying mean and variance functions, is rejected, the proposed
lack-of-fit test would provide further information about the appropriateness
of the assumed mean function, which is the most crucial part in the quasi-
likelihood. If the mean function seems adequate, one may need to modify the
variance function.

The large-sample null distribution of our test statistic can be approxi-
mated through simulations. For actual sample sizes, the appropriateness of
this approximation is carefully examined in this paper. Power comparisons
with likelihood ratio type tests are also performed to show the advantage of
the new test. For future studies, similar procedures with censored data will
be considered.
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2. INFERENCES ABOUT THE MEAN AND VARIANCE
FUNCTIONS

Let Y be the response variable and X, a p x 1 vector, be the corresponding
covariate vector. Given X = z, the conditional mean of Y is denoted by
f(z, 3), where 3 is some fixed unknown p x 1 vector. The heteroscedasticity of
the regression model can be expressed by the variance function o?¢*(z, 8,6),
where o is an unknown scale parameter and 4 is an unknown r x 1 parameter.
For example, the variance may be modeled as proportional to a power of the
mean: g(z,3,0) = (f(z,8))° (see Davidian and Carroll, 1987).

Now, let (Y;, X;),i =1,...,n, be n independent copies of (Y, X). Condi-
tional on the sequence of the observed covariate vectors z1,. .., z,, estimation
of 8,0, and 6 can be obtained based on the following quasi- and pseudo-
likelihood equations S;(3,0) = 0 and S»(8,0,0) = 0, respectively, where

51(8,6) = ‘”22(Y fg’;)f))hi(ﬁ,f)),

_ -1 Y, — f(zi,8) 2 — o2 1
S‘Z(ﬁ70 9 =n /2 Z{( (.1‘1,18 0) ) } ( Ti(ﬁ,a) ) ’
fﬂ(ria /3) af(l'i’ ﬁ)
g(z;,8,0) oB

Let the resulting estimators be denoted by B,é, and 6. The asymptotic
properties of these estimators are well-documented in McCullagh and Nelder
(1989) and Carroll and Ruppert (1988). In particular, the following asymp-
totic expansions are quite useful for developing our lack-of-fit test in the next
section:

, and r;(8,0) = ilogg(ﬂv”ﬁ 9).

fﬁ(mivﬂ) =

V(B — B) = —A5;51(8,6), (2.1)
and i
B B
va(l 6 |- ¢ |)=-4715(8,0.0), (2.2)
] 0

where $(3,0,0) = {ST(8,6), 51 (8,0,0)}",

ABB ABo A[m n
A = AaB Aoa Aaﬂ ) ABB = -n—l Zhl(ﬁao)hz‘(ﬁ,o)a Aﬁa = Oa
Ags Ags Aso = ‘
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Ago =0, A5 =—2n""0" E{—log(g(x,,ﬁ 0))}", Age = —20,

Agp = —2n~ ozzr (8,8), Ags=—-2n""0 Z (8, 9){—108(9(%B o},

Agy =0 1A, and Agy = —2n" 1022 (8,60)r! (8,9).

i=1
Note that for (2.1), if the variance function is misspecified, § should be re-
placed by 6* which is the limit of 8, as n — 00.

To show that a more efficient inference procedure can be obtained with
correctly specified variance function in the quasi-likelihood, extensive simu-
lations are performed. From (2.1), the asymptotic variance of V(B8 — ) can
be approximated by

AT .08, 0)8T (,0)1 431,
where
hi(B,6)
g(z:, 8,8)
On the other hand, without any knowledge of the structure of the variance,
one still can make inference about 3 in the following manner. Let

Ags = Appl,_s and Si(8,6) = n VY, - f(z:, 8)}

S1(8) = n M2 SV, — Flza )} s(en B)
=1

be the estimating equation for 8. Let 3 be the solution of S;(8) = 0. Then
V1 (B8 — B) is asymptotically normally distributed with mean 0 and variance

{fﬁ(xia é)fa(xi, B)T/”}_I{Z Si (B)S:I (5)}{f3($i, B)fﬂ(l‘n B)T/n}_lv

where S*(8) = n~V2(Y; — f(z:,8))fs(z:, B). In one of simulation studies,
we generate 100 samples {Y;,z;;i = 1,...,100}, where for each sample, the
covariates z;,% = 1,...,100 are fixed and are taken from the first 100 con-
centrations of esterase in Esterase Count Data(Carroll and Ruppert, 1988).
Each Y is generated from a normal distribution with mean z and variance z¥
with § = 0.5. Figure 1 is the histograms of standard deviations of estimators
of 8, from the above two different estimating procedures. We observe obvious
improvement in efficiency in estimating 3; by using cqfrect variance function.
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3. A TEST FOR LACK OF FIT

Let H;o be the hypothesis that the conditional mean of Y is f(z, 8), and
let Ho be the hypothesis that the conditional variance of Y is a%g*(z, 8, 9).
Furthermore, let Hy be the hypothesis that both H;q and Hy are true.

If one is only interested in testing Hig, i.€., testing the appropriateness of
the mean function, then the lack-of-fit test proposed by Su and Wei (1991)
based on the partial sums of residuals works well. Specifically, in our present
setting, their test statistic is G; = sup |W;(t)|, where

WA(0) = 0" S0, - o (o S 1),

I(-) is the indicator function, the event [z < t| indicates that all the compo-
nents of = are less than or equal to those of ¢, and the supremum is taken
with respect to ¢t in R?. Under H,o, one would expect that the partial sum
process W, (-) fluctuates about 0. Thus, a large value of G, leads to a conclu-
sion of the misspecification of the mean function. It is important to note that
asymptotically the test based on G, is still valid even if the variance function
is wrongly specified.

Now, we use the above idea to test the global null hypothesis Hy concern-
ing both mean and variance functions. Consider another multi-parameter
stochastic process:

Wa(t) =n"'/* il{Yi ~ [z B)}Y - %6 (2:, B,0)I (z; < ).

Let G, be the supremum of |W,(t)| with respect to t. If Hy is true, then both
W, and W, are centered around 0. Therefore, a reasonable test statistic for
testing Ho is G = max{G;,G,}. A large value of G suggests a rejection of
H,. Using a similar argument given in Su and Wei (1991), one can easily see
that the test based on G is consistent. That is, if either mean or variance
function is not the one given in Hy,, the power of the test G goes to 1, as
n — o0.

It seems difficult, if not impossible, to derive the large-sample null dis-
tribution of G analytically. However, this large sample null distribution can
be easily obtained through simulations. Under Ho, W, (t) is asymptotically
equivalent to Vi (t) +747 (t; 8)vn(8 — B), where Vi (t) = n™ /2 Y0, e;(B) I (z: <
t),e(B) =Yi— f(z:,B), and h(t,8) = —n~ 1Y fa(zs, B) (s < t). Approx-
imating n'/2(3 — 8) by (2.1),

Wi(t) & Vi(t) — ] (t;8)A5,51(B,6). (3.1)
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Now, let {y;4 > 1} be the observed values of {Y;;i > 1}. Also, let {Z;;: > 1}
be a sequence of independent and identically distributed random variables
from, say, N(0,1). Replacing ei(B) in (3.1) with (y; — f(z:,8))Z;, let the
resulting process be denoted by W,(¢; 3, 6), which is

hi(B,6)
i»8,6)

Note that only Z’s are random quantities in the above expression.
Using Taylor’s series expansion and (2.2), W;(t) can be approximated by

Va(t) = 15 (8, 8,0,6)A7'S(8,5,96), (3.2)

e _le{y,- ~ @ N2 < 1) = ] (58) A3) 2,

where
Vz(t) =n"1/? zj:[{yz - f(Iz',,B)}z - 0'292(531', 5,9)]-’(5'31' < t),

: 02 Z?:l g(xi’ B’o)gﬂ(xivﬂve)
ﬁ?(t,/ﬁ’ ag, 0) = _2n_1 UZ?:ng(xi,ﬁae) I(I’L S t)v
02 Z?:] 9(1'1', ﬁ,g)gO(x'i,Bv 0)

g5 = a%g ,and gy = {feg Let W, (t; B, 0,6) be the process obtained by replacing
{(K—f(x17/3))2 2 2( 1’13 0)} and {Y f(xn )} with {(yl—f(zuﬁ))2_
0?9*(x;,8,0)}Z; and {y; — f(z;,8)}Z; in (3.2), respectively. Let W(t) =
{Wi(t), Wa(t)} and

W(t;8,0,0) = {Wl(t;ﬁ,o),Wz(t;B,a,e)}.

Let G, = SUPD, ¢ o | Wi(t;8,6) |, Gy = = SUDyc g | Wa(t;8,6,6) |, and
G = max{Gl, Gg} We will show that G and G have the same asymptotic
distribution. Without loss of any generality, let ¢ = 1 and let all the com-
ponents of X be between 0 and 1. For some technical reasons, we split the
covariate vector X into two parts X; and X,, say, where X; consists of all
the discrete covariates and X5, a ¢ X 1 vector, consists of all the continuous
components of X. Let ¢t = (¢],t1). Then V(¢t1,t2) = > V(k,t;), where the
3" denotes summation over all possible outcomes k, generated from X, which
are less than t; componentwise, V' = {V1,Va},

1 & '
Vilk,t2) = == e(B)I(z1; = k, x5 < ta), and
- V3
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Va(k,t2) = \/— Z{e"'(m ~ ¢%(2i,8,0)H (z1; = k,z20: < t3).

Note that these V (k, ty)’s are independent to each other and are in the space
[0,1]9. It follows that the process W (t) = W (t,t2) can be approximated by

5 ( Vi(k,t2) ) _ ( i1 (t;8)A5551(8,6)
Va(k, t2) M (¢;8,0)A718(8,8) )

k<t

Now, define V = {V;,Va} and § = {S7, 5T}7, where

“ 1 &
Vi(k,t2; 8) = ﬁzzig(mhﬂ,e)l(mli =k,z3 < t2),
i=1

Va(k, ta;8,0) = \/_Z (22 = 1)g*(:, 8,0)(z1; = k,x; < t3),

A 1 &
Sl(,3,9) = ﬁzz1h1(ﬁ>0)s
i=1

5a(0.0) = <= 222 - ) ( 3.0 ) ’

and Z s are independent of {Y;,z;;i = 1,...,n}. The idea of proving that W
and W have the same asymptotic dlstrlbutlon is to show for any finite collec-
tion of points 5, .. (m) in [0, 1]%, {S(8,9), V(k, t9;5=1,...,m,k € C}
and {$(8,6),V (k, t(])) j =1,...,m,k € C} have the same limiting distri-
bution, where C is the collection of all possible outcomes generated from X;.
The next stage is to show both V (k,-) and V (k,-) are tight for each k. This
follows from Theorem 3 and the Remark given at the bottom of page 1665 in
Bickel and Wichura (1971). Hence W and W have the same limiting distri-
bution. Applying the continuous mapping theorem, we can show that G and
G have the same asymptotic distribution.

Now, let D, be the set which consists of all the kth components from
the observed covariate vectors z,...,z, and let D = [[;_ . Then, G,
sup,.p | W;(t) |, = 1,2 Therefore, there is no need of a comphcated nu-
merical method to compute the supremum. Suppose that g is the observed
value of G. The p-value, Pr(G > g), of our test can be estimated based on
G through simulations. To estimate Pr(G > g), we generate random samples
{2,,...,2,} from N (O, 1) and compute G repeatedly to obtain the empirical
proportlon that G > g.
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Naturally, if Hy is rejected, one would like to know which one, the mean or
the variance function, is misspecified. Because of the structure of G, we are
able to perform a two-stage test. Let g, be the observed value for G; and let
a be the nominal total Type I error probability. If the p-value based on G for
testing Hy is less thanAa, then we estimate the p-value Pr(G; > g;) through
simulations using Pr(G, > g;). If the second p-value is less than o, then we
claim that the mean function is misspecified; otherwise, the assumption of the
variance function is not adequate. It follows from the argument in Marcus,
Peritz and Gabriel (1976) that this sequential multiple test procedure has the
prescribed level o of significance (asymptotically) for any combination of true
hypotheses.

We apply the above lack-of-fit test to the Esterase count data (see Car-
roll and Ruppert, 1988, p.48). Here, the response variable Y is the observed
number of bindings and the covariate x is the concentration of esterase. Car-
roll and Ruppert (1988) analyze this data set with a mean function f being
Bo + Biz and a variance function g being o2(8y + Biz)*. The point esti-
mates for By, 51, 0, and 6 based on quasi- and pseudo-likelihood functions are
—38.02,18.18,0.25, and 1.0, respectively.

Using our test G, the approximated p-value is 0.636 based on 1,000 ran-
dom samples {Z, ..., Z10s} generated from N (0, 1) in estimating the distribu-
tion of G. This indicates that there is no gross inadequacies with the model.
The graphic methods which exhibit heterogeneity of variance presented in

“Carroll and Ruppert (1988, p.48-p.50) also support this conclusion.

4. SIMULATION STUDIES

For actual sample sizes, it is important to know if it is adequate to use
the estimated distribution of G obtained from simulations to approximate the
null distribution of G. Extensive numerical studies are conducted to examine
if the new test preserves the nominal Type I error probability. The results
indicate that the above approximation is satisfactory for actual sample sizes
(50 — 100). For small prescribed Type I error probabilities, say, < 0.05, our
test tends to be conservative. For example, in one of the simulation studies,
we generate 500 samples {Y;,z;;i = 1,... ,n}, where, for each sample, the
covariates z;,i = 1,...,n, are fixed and are taken from the first n concentra-
tions of esterase in Esterase Count Data (Carroll and Ruppert, 1988). Each
response Y is generated from a normal distribution with mean z and variance
2%, For each realized sample {y;,z;}, we estimate the p-value through the
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distribution of G by generating 500 samples {Z;,i = 1,...,n} from N(0,1).
In Table 1, empirical sizes of our test are reported with n = 50 and 100. For
n = 50, the new proposal appears to be conservative, especially for small a.

The proposed test is consistent against a broad class of alternatives. How-
ever, it is important to know if it is powerful enough for practical use. If there
is a particular alternative hypothesis one is interested in testing against, a
likelihood ratio type test can be constructed. Naturally, if the true model is
in the class of the models specified by the alternative hypothesis, the like-
lihood ratio test should be better than the proposed omnibus test. On the
other hand, if the alternative hypothesis does not include the true model, the
new test performs much better than the likelihood ratio one. We present two
sets of results from our extensive numerical comparisons in Table 2a and 2b.
For Table 2a, we assume that the response Y is from a normal distribution
with mean z and variance z%°, where z’s are from the first n concentrations
of esterase in Esterase Count Data. Here, the null hypothesis H, assumes
that Y has mean 3, + 8; = and variance o, which is free of z. The alternative
hypothesis is that Y has mean 8y + 3,z and variance o2(Bo+B1z)*. For cases
with n = 100, our test performs reasonably well. For Table 2b, we assume
that Y is from normal with mean z and variance z?’ and the null hypothesis
is still Hy. However, the alternative assumes that the mean is Sy + 81z + Bax?
and the variance is 2. For this case, the omnibus test is much better than
the likelihood ratio tests.

5. REMARKS

The numerical method proposed here is constructed based on the partial
sums of “mean and variance residuals” in a very natural way. From our
extensive numerical studies, we find that the new proposal is sensitive to
detect a misspecified mean or variance function if the assumed function and
the true one do not intersect with each other too frequently in the domain of
covariates. The likelihood ratio type tests are helpful during the process of
model selection. On the other hand, the proposed omnibus lack-of-fit test is
quite useful especially at the final stage of model building process.
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Table 1. Empirical levels of the lack-of-fit test G

n = 50 n = 100

Nominal 9 0

level .0 2 4 .6 .0 2 4 .6
.01 .004 .000 .002 .002 .004 .004 .002 .004
.02 .010 .008 .010 .008 .012 .014 .014 .012
.03 .016 .014 .014 .010 020 .020 .026 .020
.04 .022 .020 .018 .016 .026 .030 .030 .028
.05 .034 .030 .028 .022 .036 .042 .038 .040
.06 .046 .040 .038 .030 .044 .048 .048 .046
.07 .056 .048 .048 .042 062 .066 .062 .060
.08 072 .060 .062 .050 .074 .074 .076 .074
.09 .078 .060 .072 .056 .082 .086 .082 .084
.10 .086 .074 .076 .062 090 .094 .094 .092

Table 2. Power comparison between the new test and likelihood ratio tests

2a. against an alternative which includes the true model

n = 50 n = 100
0 0
2 4 .6 2 4 .6
New test .046 .116 .150 162 418 .688

Likelihood .112 .216 .388 236 .754 .960
ratio test

2b. against an alternative which does not include the true model (n = 100)

0
2 .25 3 4 .9
New test 162 192 290 418 .588

Likelihood .088 .064 .100 .110. .068
ratio test
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Figure 1. Histograms of standard deviations of 8

(a) Without considering the variance functions
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(b) With considering the variance functions
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