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Abstract

In this article, we propose nonconcave penalties on a reduced-rank regression model to select variables and
estimate coefficients simultaneously. We apply HARD (hard thresholding) and SCAD (smoothly clipped absolute
deviation) symmetric penalty functions with singularities at the origin, and bounded by a constant to reduce bias.
In our simulation study and real data analysis, the new method is compared with an existing variable selection
method using L; penalty that exhibits competitive performance in prediction and variable selection. Instead of
using only one type of penalty function, we use two or three penalty functions simultaneously and take advantages
of various types of penalty functions together to select relevant predictors and estimation to improve the overall
performance of model fitting.

Keywords: Group penalty, multivariate linear model, nonconcave penalty, reduced-rank regres-
sion, variable selection.

1. Introduction

Multivariate linear regression is an extension of multiple linear regression to model multiple re-
sponses; consequently, it is natural to assume that predictors as well as multiple responses are inter-
related. Reduced-rank regression (RRR; Izenman, 1975) is an enhancement of the classical multivari-
ate linear regression model that brings true multivariate features into the model by imposing a rank
constraint on regression coefficients and recently received attention in various areas such as statistics,
econometrics, and genetics.

In practice, a large number of predictors are introduced in the initial stage of regression modeling
and one of the most difficult aspects in this case is the interpretation of linear combination of predictors
normally with non-zero coefficient estimates. One possible solution to this problem would be using
stepwise deletion and subset selection; however, the stepwise deletion and subset selection tend to
ignore stochastic errors inherited in the stages of variable selections and suffer from several drawbacks
such as a lack of stability as analyzed by Breiman (1995).

Another possible solution would be introducing penalty function as in usual regression analysis.
The rank constraint implies that the coefficient matrix can be expressed as the product of two lower
rank matrices. The variable selection in this case is achieved by adding a penalty to the least squares
fitting criterion for sparse solutions of the reduced-rank coefficient matrix. Chen and Huang (2012)
proposed a group-lasso type penalty that treats each row of the regression coefficient as a group and
developed two numerical algorithms for computation and tuning parameter selection methods. A
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unified estimation strategy that combines regression-type formulation of reduced-rank regression and
grouped lasso penalties was effective but fails to deliver a robust estimator since it adopts L; penalties.

Fan and Li (2001) proposed a variable selection method using penalized likelihood functions and
argued that it is possible to retain good features of both subset selection and ridge regression using a
unified approach via penalized least squares. They further showed with proper choice of regularization
parameters that the proposed estimators perform as well as the oracle procedure in variable selection.
This penalized least squared idea can be extended to reduced-rank regression because it belongs to
likelihood-based models.

In Section 2, we discuss adding nonconcave penalty functions like HARD (Antoniadis, 1997) and
SCAD (Fan and Li, 2001) to reduced-rank regression setup. A unified iterative algorithm extending
variational method of Chen and Huang (2012) to solve penalized reduced-rank regression is intro-
duced in Section 3. Section 4 includes numerical comparisons through simulation studies. Results
of analyzing well known Yeast data with several penalty functions are provided in Section 5. Some
discussion is given in Section 6.

2. Nonconcave Penalized Reduced-Rank Regression
2.1. Reduced-Rank regression model (Reinsel and Velu, 1998)

Reduced-rank regression is a multivariate linear regression method (with more than one response vari-
ables and a set of predictors), where the estimated matrix of regression coefficients is of reduced rank.
Suppose we have g response variables and p predictors and assuming a linear relationship between
each response variable and the predictors. Further assume that we have n multivariate observations of
the response and predictor variables, organized in matrices Y and X of dimensions n X g and n X p.
We can write the model in matrix notation as

Y = XC + &, @2.1)

where C is the p X g matrix of regression coefficients, and & is the n X g error matrix. Residual sum
of squares for the multiple response case are defined as

Q(€)=tr [(Y -x€) (Y- XC)] = |ly-x¢|, 2.2)

where || - || denotes the Frobenius norm for a matrix. In the method of ordinary least squares (OLS)
(2.2) is minimized without any restrictions on C. This yields the ordinary full-rank estimate

COLS —gig, 2.3)

where S, = (1/n)X’X, Sy = (1/m)XTY and the rank of C is m = min(p, g) are of full rank.
Reduced-rank regression utilizes interrelationships between response variables by imposing a con-
straint on the rank of C. Now, let us assume

rank (C) = r < m. 2.4

Equations (2.1) and (2.4) together define the reduced-rank regression model. When C has reduced-
rank r, there exist two full-rank matrices A and B such that

C=BAT,
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Figure 1: Plot of penalty functions and the first derivatives
where B has dimension p X r, and A is of dimension g X r. The model (2.1) can be rewritten as
Y = XBAT + &, (2.5)

which makes it possible to model g response variables with r(r <
predictor variables.
Estimates of A and B can be achieved by solving the optimization problem

q) linear combinations of the

: _ 2
min|[Y - XBA| 2.6)

with rank(A) = rank(B) = r. A set of solution for matrices A and B is provided by

~

A=v, B=S]S,V,
where V = [vy,...,v,] and v; is the eigenvectors of Sny;i S,y corresponding to the i largest eigen-
value y; with S, = (1/n)Y'X.

2.2. Penalized reduced-rank regression

We consider applying nonconcave penalty function idea to reduced-rank regression in this section.
Using penalized least squares (or likelihood idea) in variable selection is better because they retain
good features of both subset selection and ridge regression (Fan and Li, 2001). By including penalty
functions in reduced-rank regression problems, it is possible to force estimates related to unnecessary
predictors to zero safely so making interpretations easier.

Chen and Huang (2012) argued that using grouped lasso penalty (Yuan and Lin, 2006) instead
of applying element-wise lasso penalty (Tibshirani, 1996) guarantees the identifiability of variable
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selection. Thus, the group lasso penalty encourages row-wise sparsity on the B matrix. Applying
row-wise group penalty function to the optimization problem (2.6) becomes

14
min [[¥ - XBA”[[" + Zl pa ([B)).  suchthat ATA =1, @7

where B’ is the i row of B and A; > 0 are penalty parameters. Instead of using Ap(]| - ||) we uses
pall - 1) so p(|| - |I) may be allowed to depend on A and we assume that the penalty functions for all
coefficients are the same and delete subscript i of tuning parameter 4;. Fan and Li (2001) argued
that unbiasedness, sparsity, and continuity are three properties possessed by a good penalty function,
and suggested SCAD penalty function as best for regression problems. Several well-known penalty
functions including SCAD penalty function are as follows.

1. Ly: pa(IB|]) = A|/B||” and it becomes LASSO with p = 1 for least squares case.
2. Hard Thresholding (HARD) Penalty:

pa(IBI) = 22 = (1BIF = 2)° 1 (8] < 2).

3. Smoothly Clipped Absolute Deviation (SCAD) Penalty:

A if B[] < 4.
A B 208+ 22 ;
p/l(HB’H) ={ - a-1) , ifa< HBH <ad,
2
%, if [[B]] > ar.

Fan and Li (2001) noted that consistency and oracle properties cannot be satisfied simultaneously
for the L; penalty. The hard thresholding (HARD) penalty function is unbiased and is sparse (but not
continuous). SCAD behaves somewhat between L; and HARD and need two dimensional burden-
some Generalized Cross-Validation (GCV) or usual Cross-Validation (CV) to find optimal values for
two parameters, a and A. Figure 1 provides shapes of penalty functions and 1st derivatives for L;,
HARD, and SCAD penalties with A = 1 and a = 3.7 for the SCAD penalty function.

3. Numerical Algorithm

In this section, we presents a unified algorithm to solve the optimization problem (2.7) and also
discussed methods to select appropriate tuning parameters.

3.1. Iterative optimization

We can solve the optimization problem (2.7) iteratively by optimizing over A for fixed B and then
optimizing over B for fixed A as follows.
For fixed B, (2.7) becomes

min||Y - XBA”[, such that ATA =L 3.1)
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This optimization is known as an orthogonal Procrustes problem (Gower and Dijksterhuis, 2004). The
solution is A = UVT, where U and V are obtained from singular value decomposition Y7XB = UDV?
with Uy, and V.

The optimization over B for fixed A reduces to

P
: 7|2 i

min [[YA - XB'||" + ; pa([18])) (3.2)
since there exists a matrix A+ with orthogonal columns such that (A, A*) is an orthogonal matrix. We
may apply local quadratic approximation approach of Fan and Li (Section 3.3, 2001) and subgradient
method (Friedman et al., 2007) to solve optimization problem of (3.2) with respect to B/, the i row of
B. When ||B|| # 0, the first derivative of penalty function can be locally approximated by a quadratic
function as

[pa(IBID] = 22 (B sem (I1B]) = {4

and (3.2) also can be locally approximated by

QB iy, L pi T 9°QB0)
Q(Bo) + OB! (B B BO) *3 (B B BO) OBlOBIT
where we are given an initial value By that is close to the minimizer of (3.2) with Q(By) = |[YA —
XBy|, and 2,(Bo) = diag(p/,(IByll/IBgID, .. ., (B II/IBHID)-
Taking the first-order condition for B’ (i = 1,. .., p) for optimization problem (3.2), and collecting
all these conditions result as

B[)/(B'||} B’ (3.3)

1
(B'-By) + EBZTZA(BO)BZ, (3.4)

1
-X"(YA — XB) + EZA(BO)B =0.

Solving for B yields
1 -1
B- {XTX + 5zﬁ(BO)} X"YA. (3.5)

The solution can be found by iteratively computing the above ridge regression (3.5). One iterates
between (3.4) and A until convergence and needs to set a threshold for |[B/|| to get sparse solutions if
necessary.

3.2. Parameter tuning

In the simulation studies, we fix the number of rank () to true value 3 instead of estimating it from
cross-validation for each data set generated to focus on the effect of applying different penalty func-
tions. We also fix the number of rank for the Yeast data set as 4 suggested by Chen and Huang (2012)
in their analysis. Penalty parameter A is selected from 5-fold cross-validation (CV) for each data set
simulated and Yeast data set. We have one more parameter a in the SCAD penalty function in addition
to usual A. Fan and Li (2001) argued that the choice of a = 3.7 is very reasonable for wide range of
data sets, so we also fixed a as 3.7 throughout all simulated and real data analysis.

4. Small Simulation

In this section, we use simulated data to illustrate and compare the performance of L;, HARD, and
SCAD penalty functions.
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4.1. Simulation setup

The model used in simulation study is (2.5), Y = XBAT + & The n X p predictor matrix X was
generated from multivariate normal distribution N(0, X,), where X, having diagonal elements 1 and
off-diagonal elements p,. We generated first py rows of the p X r matrix B from N(0, 1) and rest
p — po rows were set to be zero. The elements of g X r matrix A were generated from N(0, 1)
and elements of the n X g random error matrix & were generated from N(0,0*E,) with X, having
diagonal elements 1 and off-diagonal elements p,. We set o> = 0.01 to make the signal-to-noise ratio,
trace(CTX,C)/trace(&) ~ 1.

After centering and standardizing Y, we applied L; penalty function as well as HARD, and SCAD
penalty function to each data set generated. We compared accuracy of three penalty functions in terms
of the angle between true and estimated row vector of coefficient matrix B,

TR
9i=acos(w), i=1,...,p. “4.1)
B - 1Bl

We also compared the three penalty functions in terms of the number of correct non-zeros (C) and
incorrect zeros (IC) for each data set. Correct non-zeros C is simply the average presents restricted
only to the true non-zero rows of coeflicients. The incorrect zeros IC depicts the average of coefficient
rows erroneously set to 0. All measures are reported as the average and standard deviation (SD) in
parenthesis of 100 repetitions for each case.

We considered three sets of simulations as follows. In the first set of simulations, we fix r = 3,
N =100, p = 30, pp = 10, g = 10 and varying p, and p,. Moderate amount of correlation among
predictors is introduced in the second cases (Case 2, 6 and 10) of each set, and stronger correlation of
0.9 for the third cases (Case 3, 7, and 11). And moderate amount of correlation among error terms or
responses is introduced in the fourth cases (Case 4, 8, and 12).

Case 1: N =100, p =30, py =10, g =10, p, =0, p. = 0 (Table 1, and Figure 2)

Case 2: N =100, p =30, py = 10, g = 10, p, = 0.5, p. = 0 (Table 2, and Figure 3)

Case 3: N =100, p =30, py = 10, g = 10, p, = 0.9, p. = 0 (Table 3, and Figure 4)

Case 4: N =100, p =30, py = 10, g = 10, p, = 0, p, = 0.5 (Table 4, and Figure 5)

The second set is similar to the first set except the number of observation (N) reduces to 50.
Case 5: N =50, p =30, po =10, ¢ = 10, p, = 0, p, = 0 (Table 5, and Figure 6)

Case 6: N =50, p =30, pg =10, g =10, p, =0.5, p, = 0 (Table 6, and Figure 7)

Case7: N =50, p =30, pg=10,q =10, p, = 0.9, p, = 0 (Table 7, and Figure 8)

Case 8: N =50, p =30, pg =10,q =10, p, =0, p, = 0.5 (Table 8, and Figure 9)

The third set is a higher dimensional case with n << p. We consider the case with r = 3, N = 50,
p =70, po =20, g = 10 and varying p, and p, similar to previous two setups.

Case 9: N =50, p =70, pp =20,qg =10, p, =0, p. = 0 (Table 9, and Figure 10)

Case 10: N =50, p =70, pp =20, g = 10, p, = 0.5, p, = 0 (Table 10, and Figure 11)
Case 11: N =50, p =70, po = 20,9 =10, p, = 0.9, p, = 0 (Table 11, and Figure 12)
Case 12: N =50, p =70, pp = 20,49 =10, p, =0, p, = 0.5 (Table 12, and Figure 13)
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Table 1: Mean of angles between true and estimated B, C (No. of correct selection), and IC (No. of incorrect
selection) (Case 1: N = 100, p = 30, po = 10, g = 10, p, = 0, p. = 0)

Penalty Mean of row Angles C IC

Ly 0.136 (0.062) 30.00 (0.000) 2.22(6.777)
HARD 0.149 (0.052) 29.97 (0.300) 0.86 (2.179)
SCAD 0.144 (0.056) 29.97 (0.300) 6.68 (6.716)

Angles between True & Estimated Coefficients
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Figure 2: Boxplot of mean angles between true and estimated B, C (No. of correct selection), and IC (No. of

incorrect selection): Case 1

Table 2: Mean of angles between true and estimated B, C (No. of correct selection), and IC (No. of incorrect

selection) (Case 2: N = 100, p = 30, pg = 10, g = 10, p, = 0.5, p. = 0)

Penalty Mean of row Angles C IC

L 0.167 (0.067) 30.00 (0.000) 0.24 (1.393)
HARD 0.201 (0.067) 29.64 (0.980) 0.60 (1,858)
SCAD 0.168 (0.074) 29.99 (0.100) 4.66 (4.835)
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Figure 3: Boxplot of mean angles between true and estimated B, C (No. of correct selection), and IC (No. of
incorrect selection): Case 2



48 Sang Yong Jung, Chongsun Park

Table 3: Mean of angles between true and estimated B, C (No. of correct selection), and IC (No. of incorrect
selection) (Case 3: N = 100, p = 30, pg = 10, ¢ = 10, p, = 0.9, p, = 0)

Penalty Mean of row Angles C IC

L 0.344 (0.105) 28.95 (1.828) 0.21 (0.880)
HARD 0.449 (0.110) 24.67 (3.843) 0.15 (0.989)
SCAD 0.329 (0.114) 28.80 (1.907) 0.78 (2,321)
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Figure 4: Boxplot of mean angles between true and estimated B, C (No. of correct selection), and IC (No. of
incorrect selection): Case 3

Table 4: Mean of angles between true and estimated B, C (No. of correct selection), and IC (No. of incorrect
selection) (Case 4: N = 100, p = 30, pg = 10, ¢ = 10, p, = 0, p, = 0.5)

Penalty Mean of row Angles C IC

Ly 0.146 (0.057) 30,00 (0.000) 1.97 (5.987)
HARD 0.139 (0.055) 29.90 (0.522) 0.45 (1.374)
SCAD 0.128 (0.050) 29.99 (0.100) 6.42 (6.671)
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Figure 5: Boxplot of mean angles between true and estimated B', C (No. of correct selection), and IC (No. of
incorrect selection): Case 4
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Table 5: Mean of angles between true and estimated B, C (No. of correct selection), and IC (No. of incorrect
selection) (Case 5: N = 50, p = 30, pp = 10, ¢ = 10, p, =0, p, = 0)

Penalty Mean of row Angles C IC

L 0.175 (0.057) 29.94 (0.422) 3.53 (6.940)
HARD 0.214 (0.052) 29.19 (1.468) 1.60 (2.625)
SCAD 0.176 (0.051) 29.94 (0.422) 9.05 (6.570)
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Figure 6: Boxplot of mean angles between true and estimated B, C (No. of correct selection), and IC (No. of
incorrect selection): Case 5

Table 6: Mean of angles between true and estimated B, C (No. of correct selection), and IC (No. of incorrect
selection) (Case 6: N = 50, p = 30, po = 10, g = 10, p, = 0.5, p, = 0)

Penalty Mean of row Angles C IC

Ly 0.237 (0.071) 29.69 (0.907) 2.52(4.279)
HARD 0.307 (0.064) 28.25 (2.017) 1.49 (2.002)
SCAD 0.219 (0.068) 29.64 (0.980) 6.30 (5.846)

Angles between True & Estimated Coefficients

w _| o
=

0 000

04
®oo

Angle
03

02

T T T
L1 Hard Scad

Figure 7: Boxplot of mean angles between true and estimated B, C (No. of correct selection), and IC (No. of
incorrect selection): Case 6
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Table 7: Mean of angles between true and estimated B, C (No. of correct selection), and IC (No. of incorrect
selection) (Case 6: N = 50, p = 30, po = 10, g = 10, p, = 0.9, p, = 0)

Penalty Mean of row Angles C IC

L 0.541 (0.113) 25.39 (3.035) 1.95 (3.701)
HARD 0.737 (0.136) 17.34 (3.542) 1.26 (2.144)
SCAD 0.524 (0.118) 24.40 (3.300) 2.22(2.801)
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Figure 8: Boxplot of mean angles between true and estimated B, C (No. of correct selection), and IC (No. of
incorrect selection): Case 7

Table 8: Mean of angles between true and estimated B, C (No. of correct selection), and IC (No. of incorrect
selection) (Case 8: N = 50, p = 30, pp = 10, g = 10, p, =0, p, = 0.5)

Penalty Mean of row Angles C IC

Ly 0.180 (0.055) 29.88 (0.591) 3.06 (6.310)
HARD 0.203 (0.048) 29.64 (1.069) 1.37 (2.533)
SCAD 0.170 (0.053) 29.86 (0.603) 7.65 (7.006)
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Figure 9: Boxplot of mean angles between true and estimated B', C (No. of correct selection), and IC (No. of
incorrect selection): Case 8
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Table 9: Mean of angles between true and estimated B, C (No. of correct selection), and IC (No. of incorrect
selection) (Case 9: N = 50, p =70, py = 20, q = 10, p, =0, p, = 0)

Penalty Mean of row Angles C IC

L 0.275 (0.059) 58.61 (2.188) 26.19 (16.765)
HARD 0.380 (0.060) 54.69 (3.317) 16.93 (7.966)
SCAD 0.283 (0.051) 58.34 (2.171) 36.09 (13.238)
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Figure 10: Boxplot of mean angles between true and estimated B/, C (No. of correct selection), and IC (No. of
incorrect selection): Case 9

Table 10: Mean of angles between true and estimated B, C (No. of correct selection), and IC (No. of incorrect
selection) (Case 10: N =50, p =70, pg =20, g = 10, p, = 0.5, p. = 0)

Penalty Mean of row Angles C IC

Ly 0.380 (0.074) 56.60 (3.094) 18.06 (10.756)
HARD 0.545 (0.086) 47.73 (4.481) 11.18 (6.743)
SCAD 0.384 (0.082) 56.19 (3.071) 25.84 (10.445)
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Figure 11: Boxplot of mean angles between true and estimated B/, C (No. of correct selection), and IC (No. of
incorrect selection): Case 10
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Table 11: Mean of angles between true and estimated B, C (No. of correct selection), and IC (No. of incorrect
selection) (Case 11: N =50, p =70, pg =20, g = 10, p, = 0.9, p, = 0)

Penalty Mean of row Angles C IC

L 0.770 (0.116) 38.01 (6.091) 7.16 (5.361)
HARD 1.009 (0.116) 22.33 (5.067) 4.63 (4.691)
SCAD 0.758 (0.126) 36.77 (5.894) 9.85 (6.611)
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Figure 12: Boxplot of mean angles between true and estimated B/, C (No. of correct selection), and IC (No. of
incorrect selection): Case 11

Table 12: Mean of angles between true and estimated B, C (No. of correct selection), and IC (No. of incorrect
selection) (Case 12: N =50, p =70, pg =20, ¢ = 10, p, =0, p, = 0.5)

Penalty Mean of row Angles C IC

Ly 0.283 (0.054) 58.80 (1.809) 25.06 (16.227)
HARD 0.395 (0.068) 55.22 (3.230) 15.32(7.542)
SCAD 0.290 (0.063) 58.53 (2.100) 35.06 (12.520)
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Figure 13: Boxplot of mean angles between true and estimated B, C (No. of correct selection), and IC (No. of
incorrect selection): Case 12
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Table 13: Mean and SE of prediction errors for Yeast Dataset

Penalty Mean SE
Ly 0.187 0.00141

HARD 0.192 0.00170

SCAD 0.188 0.00135

4.2. Simulation results

We applied three penalty functions to each of twelve cases. For each case, 5-fold cross-validation is
used to select optimal tuning parameter A. Table 1 through Table 12 reports average of row angles
between true and estimated row vector of coefficients, the number of correctly selected rows, and the
number of incorrectly selected rows erroneously set to O and their standard deviations from 100 test
samples. Figure 2 to Figure 13 includes boxplots for average angles of three penalties for each case.

Regardless of differences in parameter settings, behavior of all three measures between cases are
similar. Overall, angles between true and estimated coefficients of L; and SCAD penalty functions
are smaller than HARD penalty, but SCAD penalty look better with smaller SD in more cases. Even
though HARD penalty looks more biased than other two penalties, it seems to be more efficient in
that it avoids erroneously forcing coefficients of relevant predictors to 0.

All three penalties show almost perfect performance to select irrelevant predictors in all cases
with n > p. In the higher dimensional case with n << p, measure C (number of correct selection)
deteriorates when there is strong correlation between predictors. All three penalties fail to select true
non-zero coefficients properly.

Angles between true and estimated coefficients increases as correlation between predictors be-
comes stronger. Unless there exists strong correlation between predictors, it has little effect on all
three measures regardless of penalty type. However, it is interesting to note that SCAD penalty is
always a winner when there exists a strong correlation between predictors.

5. Real Data Example

Transcription factors (TF) play an important role to regulate RNA transcript levels of yeast genes
within the eukaryotic cell cycle. We use a data set analyzed by Chun and Keles (2010), that includes
524 genes for a total of 106 TFs and RNA levels measured every 7 min for 119 min with a total
of 18 time points. Data set consists of expression levels for 542 cell cycle related genes at 18 time
points using the chip-chip data of 106 TFs and identifies cell cycle related TFs as well as to infer TF
activities. Then Y becomes 524 x 18 matrix and X is a 524 x 106 matrix.

We set the number of rank, r = 4 as recommended by Chen and Huang (2012) and 5-fold cross-
validation was used for selecting tuning parameter A. Additional tuning parameter a in SCAD is set
to be 3.7. Prediction accuracy was calculated 100 times as follows. We split the data set into 50%
training and 50% test set. The training selects the best penalty parameters and model used in the
corresponding model to predict test data. Table 13 reports the means and standard errors of squared
prediction errors from random 100 splits.

All three penalties perform similar to angles in the simulation studies from the previous section
in terms of prediction errors. The larger prediction error of HARD seems to be due to the relatively
larger biases than the other two penalties. In terms of standard error, HARD penalty is the worst and
SCAD is the best among the three.
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6. Concluding Remarks

We propose a group-type nonconcave penalties for a reduced-rank regression model and compared
their performances with group lasso or L; penalty function. We show that the HARD penalty function
is efficient to avoid incorrect selection and that the SCAD penalty function is comparable with L,
penalty in terms of angles between true and estimated coefficients, and is robust with respect to corre-
lation between predictors. However, SCAD penalty fails more often in selecting irrelevant predictors
overall.

We may use two or three penalty functions simultaneously instead of only one type of penalty
function. We can then take advantage of various features of penalty function together to select relevant
predictors and estimation to improve overall modeling performance. Results from applying the HARD
penalty can identify a subset of relevant predictors; consequently, results from SCAD or L; help obtain
accurate estimation and prediction.

It is also possible to extend above idea to RVGLM (Reduced-rank Vector Generalized Linear
Models; Yee and Hastie, 2003) simply by replacing the optimization part of (2.7) with a negative of
appropriate likelihood function defendant on type of response variable.
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