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Moment-Based Density Approximation Algorithm for
Symmetric Distributions

Hyung-Tae Hal)

Abstract

Given the moments of a symmetric random variable, its density and
distribution functions can be accurately approximated by making use of the
algorithm proposed in this paper. This algorithm is specially designed for
approximating symmetric distributions and comprises of four phases. This
approach is essentially based on the transformation of variable technique and
moment-based density approximants expressed in terms of the product of an
appropriate initial approximant and a polynomial adjustment. Probabilistic
quantities such as percentage points and percentiles can also be accurately
determined from approximation of the corresponding distribution functions.
This algorithm is not only conceptually simple but also easy to implement.
As illustrated by the first two numerical examples, the density functions
o obtained are in good agreement with the exact values. Moreover, the
proposed approximation algorithm can provide the more accurate quantities
than direct approximation as shown in the last example.

Keywords: Approximation algorithm; density approximation; moments; percentage poin-
ts; symmetric distributions; transformation of variables.

1. Introduction

Symmetric distributions have been given much attention not only in the statistical
literature but also in many scientific fields. For instance, test statistics for symmetry
such as the Cramer von Mises test were developed and a family of symmetric unimodal
distributions on the circle was considered by Rothman and Woodroofe (1972) and Jones
and Pewsey (2005). In connection with Tukey’s symmetric Lambda distributions, the
k" moment of the proposed order statistics was explicitly derived for approximating its
expectation in Joiner and Rosenblatt (1971); as can be seen in this case, it is possible to
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determine the moments of various statistical quantities, whereas their exact density and
distribution functions are often analytically intractable or difficult to obtain in closed
forms.

Several types of moment- or cumulant-based approximations to the distributions of
various random quantities of interest have been proposed in the statistical literature.
Gram-Charlier series and Cornish-Fisher expansions as well as saddlepoint type approxi-
mations have been extensively discussed over the last several decades in connection with
this problem. These techniques were introduced for approximating density functions
for finite sums of independent and identically distributed random variables. While the
moment-generating functions or characteristic functions of convolutions can be easily
obtained, this is not the case for their density functions. It should be noted that these
methods are very useful for approximating the density functions of test statistics since un-
der the null hypothesis, many test criteria can be expressed in terms of a convolution. A
Gram-Charlier approximation might be a good option for approximating a density func-
tion when the normal approximation does not provide enough accuracy. The saddlepoint
approximation method, which was pioneered by Daniels (1954), has been much investi-
gated. It was shown to provide excellent approximations in many statistical applications.
The most significant advantage of the saddlepoint method is that the approximants so
obtained are usually quite accurate in the tail areas of the target density. It ought to
be pointed out that those existing methods might have difficulties to provide accurate
approximations to the examples used in this paper since they have unusual features.

The distribution of a symmetric random variable can be approximated from its mo-
ments either directly on its entire support or via a transformation. The latter approach
is recommended when the distribution exhibits a sharp peak or trough at the point
of symmetry. This paper introduces a density approximation algorithm that is based
on the transformation of variables techniques and a density approximant proposed by
Ha and Provost (2007). This approach makes use of the fact that, once translated by
A, the point of symmetry, the distribution being approximated and the corresponding
distribution defined on the positive half-line share the same even moments.

The required notation is introduced in Section 2 and the density approximation
algorithm specially designed for the symmetric distributions on the basis of a matching-
moment technique is described in Section 3. Initial approximations having beta and
gamma densities are being considered. In Section 4, the proposed methodology is applied
to three artificial examples wherein the accuracy measures are computed to illustrate the
advantage of the proposed approximation algorithm. Certain computational aspects and
concluding remarks are discussed in Section 5.

2. Notation

The following notation will be used in this paper.

At the point of symmetry,
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Z : a continuous random variable with symmetric distribution about the point
~ of symmetry A,

fz(-) and pz(h): the symmetric density function of Z and the h** raw moment
of the random variable Z, respectively,

X : the corresponding random variable centered about zero, that is, X = Z — A,

fx(-) and px(h): the density function and the A** raw moment of X, respec-
tively,

R : arandom variable having a bona fide density function, which is defined on
the positive part of X,

fr(-) and pgr(h): the density function and the h** raw moment of R, respectively,
T : random variable denoting a square of R, that is, T = R?,

fr(-yand pr(h): the density function and the h** raw moment of T, respectively,
¥(-) : an initial approximation to a density function,

m(h) : the ht" raw moment of an initial density approximant,

fz4(2), fx,(x), fr,(r) and fr,(t) : density approximants with polynomial ad-
justments of degree d for Z, X, R and T, respectively,

Zs(x) : the indicator function with respect to the set S, which is equal to 1 when
z € S and 0 otherwise.

3. The Algorithm

The following approximation algorithm, which comprises of four phases, is specially
designed for approximating symmetric distributions on the basis of their theoretical mo-
ments. Our aim is to obtain an approximate density function for a symmetric random
variable on the basis of its moments.

Phase 1. Transformation
The first phase is the transformation of the random variable Z, which comprises of
three steps. The first step is a transformation of the symmetric random variable and its
moments about its point of symmetry. Letting A be the point of symmetry of the random
variable Z, the proposed methodology is applied to X = Z — ), whose h** moment is

h

h
) = Bz = =Y (1) 5@ = 3 (B Wt e)

=0 =0

The resulting density approximant is symmetric about zero, that is, fx(z) = fx(—z).
The second step consists in defining a random variable R whose support is on a subset



586 Hyung-Tae Ha

of the positive half-line. Its density function fg(z) is such that

fx(z) = % Fr(=2) T—oo (@) + % (@) To00) (@) (3.2)
and

fR('l") =2 fX (T‘) I(O,oo) ('I‘) . (33)

We note that pg(2h) = ux(2h), h = 0,1,.... Clearly, all the odd moments of X are
equal to zero and no information is available on the odd moments of R. In the final step
of the first phase, we let ' = R? and uz(h) denote the ht" moment of T. Since the
odd moments of R are not available from those of X, we approximate the density of T
whose moments, which are denoted by pr(h) with pr(h) = px(2h), h=0,1,..., are all
available.

Phase 2. Initial Approximation

The second phase consists in obtaining an initial approximation to the density of T
As pointed out in Ha and Provost (2007), when selecting a density function as the initial
approximation, it should be kept in mind that one may choose a certain density function
to be asymptotically or approximately distributed. For example, if it is known that a
certain random quantity has approximately or asymptotically a chi-squared distribution,
for instance, quadratic forms in normal random variables, then a gamma density as an
initial approximation would be appropriate. Initial approximants can also be determined
from the information about support of the target density. For instance, such an initial
approximant could be a uniform or beta density function when the support is compact,
or a gamma or Weibull density function when the support is the positive half-line. The
choice of an initial approximate density function can be made on the basis of the support
of T and possibly on the behavior of its moments.

For example, when a beta density in the interval (0, 1) is suitable as an initial
approximation, the baseline density, ¥(z), is

_ T(a+p)

P(t) = NG 1= 1) T (1), (3.4)

Z4(t) denoting the indicator function, which is equal to 1 when ¢t € A and 0 otherwise.
The parameters o and 3 are estimated as follows:

_ b (D) (pr(1) — pr(2)) an _
*= pr(2) — pr(1)? ¢ 7 pr(1) &9

(see for instance Johnson et al., 1995, Section 25). The j*" moment of this beta distri-
bution is given by

_Te+pT(+)) _ [Hisk+a)
D) T(a+ji+8) [Ei(k+a+8)’

(A —pr(1))(a+1)

m(j) i=12.... (3.6)
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When the target density of T has an approximate or asymptotic gamma distribution,
the initial approximant can be chosen to be a gamma density function with parameters
~ and 4, that is,

1 1 -
Y(t) = ~t7"le 8 Ti0,00)(2) (3.7)
whose h*® moment is given by

_"T(y+h

h
m(h) ) )=5”i]_:[1(7+h—i), h=0,1,..., (3.8)

the parameters v and & being estimated as follows:

pr(1)? pr(2)
—— —— and &= — pr(l (3.9)
@) ~ pr (i) e

(see for example Johnson et al, 1994, Section 17).

’y:

Phase 3. Polynomial Adjustment
In this phase, we determine a polynomial adjustment such that the first d moments
of the approximant coincide with those of 7. As shown in Provost (2005), the coefficients
& of the d** degree polynomial adjustment, Z?:o &t satisfy the following equation. It
could be useful to provide the main equation which yields this system,

(o] [ mO) m@) - m@d 17 @ ]

& m(1) m(2) --- m(d+1) pr(1)

: = : : : : . (3.10)
§a—1 m(d—1) m(d) - m(2d-1) pr(d—1)
| &a ] | m(d) m(d+1)--- m2d) | | pr(d) |

Thus, the density approximant denoted by fr,(t) can be expressed as the product of
an initial approximation, 1(x}, which is in fact a density function whose parameters are
estimated by matching the moments of the target density to those of the initial approx-

imant, and a polynomial adjustment, Zgzo &t, whose coefficients &; satisfy Equation
(3.10), that is,

d
Fr(8) = (1) Y&t (3.11)
i=0
It should be mentioned that the choice of the initial approximant plays a key role for
approximating the density function of T'. If the convergence rate of the tails of the initial
approximant agrees with those of the target density, the approximation by making use
of the product of an initial approximant and a polynomial adjustment is more likely to
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provide accuracy to the target density than the approximation on the basis of the initial
approximant chosen without consideration about the tail convergence rate.

Phase 4. Inverse Transformation for obtaining a Density Approximant
to Z
In this final phase, we wish to obtain a density approximant for Z the original
symmetric random variable on the basis of our density approximant of T. This phase
comprises of three steps as was the case for the inverse of the transformation obtained
in the first phase. First, we apply the inverse of the square transformation to obtain a
density approximant for R, denoted by fr,(r). This yields

d
Fra(r) = 2rfr,(r?) = 2rp(r?) Y " &r®. (3.12)
=0
Secondly, we symmetrize and normalize the approximate density of R to obtain a sym-
metric density approximant for X denoted by fx,(z). That is, we let

Fx0(@) = 3I7u(~2) T-00)@) + 2 f1,(8) L) (313)

Finally, we translate the distribution of X so that it is centered at the location parameter
A in order to obtain the following d** degree density approximant for Z:

de(Z) = fXd(z+)\)‘ (314)

It should be noted that the cumulative distribution function of X can simply be ap-
proximated by integration of the proposed density approximant. The resulting quantiles
are usually quite accurate.

4. Numerical Examples

The proposed approximation algorithm is applied to three symmetric distributions in
this section. A symmetrized mixture of uniform and beta distributions is considered as
an example of application on a compact support. The distribution of a symmetrized mix-
ture of exponential and generalized beta distributions, whose support is the entire real
line, will also be considered. A symmetrized mixture of two equally weighted Beta distri-
butions is also considered to show how the proposed approximation algorithm improves
accuracy.

4.1. Symmetrized mixture of uniform and beta distributions

Consider the symmetrized mixture of a uniform random variable on (0,0.5) and a
beta random variable with parameters 2 and 6, whose support is the interval (0, 1). The
point of symmetry is zero in this case. We note that this is not a simple density function
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Figure 4.1: Density approximant for a certain mixture of uniform and beta dis-
tributions (dotted) and exact density

to approximate since it involves distributions having different supports and the resulting
density function is not differentiable at the points of —1/2, 0 and 1/2. The twentieth
degree beta-polynomial approximant to the density of T, as determined from the pro-
posed algorithm, is plotted and superimposed on the exact density in Figure 4.1. As can
be seen from Figure 4.1, the proposed approach produces a density approximant that is
quite accurate on the entire support including neiborhoods of the point of symmetry and
the points of non differentiability.

4.2. Symmetrized mixture of exponential and generalized beta
distributions

We now consider the symmetrized mixture of an exponential random variable with
parameter 4 and a beta random variable with parameters (4,2) which is defined on the
interval [1/2, 2] with respective weights of 4/5 and 1/5. We approximated this density by
means of a twelfth-degree gamma-polynomial approximant, making use of the four-phase
approach. Figure 4.2 shows the exact and approximate densities of T', while the exact
and approximate densities of X are plotted in Figure 4.3.
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Figure 4.2: Exact and approximate (dashed) densities for a certain mixture of
exponential and beta distributions

Figure 4.3: Exact and approximate (dotted) densities for X
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Table 4.1: Error comparisons

Moments | Quantities Four-phase Direct
60 MSE 1.44189 x 10710 | 8.50741 x 10719
60 MaxSE | 1.22329 x 1072 | 1.20263 x 1078
20 MSE 1.09936 x 108 | 2.45313 x 1077
20 MaxSE | 6.27226 x 108 | 1.96224 x 10~

4.3. Symmetrized mixture of two equally weighted beta distributions

In order to give an indication of the improvement in accuracy that the proposed
algorithm provides, we consider the symmetrized mixture of two equally weighted beta
distributions with parameters (3,7) and (8,4), respectively. In this case, a uniform
distribution (that is, a beta (1,1) distribution) and a sixtieth-degree (and a twentieth-
degree) polynomial adjustment have been used as initial approximation to the density
of R and polynomial adjustment, respectively. To illustrate the advantage gained by
making use of the proposed approach, we compare it with the direct approximation
of the density of X obtained from sixtieth and twentieth-degree Legendre polynomials
which support is the interval (—1,1), which is described in Provost (2005). The direct
and the proposed approaches are compared in Table 4.1 in terms of the following two
quantities: the mean squared error (MSE) and the maximum squared error (MaxSE).
It can be seen that in every case, the proposed approximation algorithm produces more
accurate density approximants.

5. Concluding Remarks

The selection of the number of moments to be used for obtaining an appropriate
approximant, which is equivalent to determining a suitable degree for the polynomial ad-
justment, can be determined by inspecting the density plots of approximants of successive
degrees. For instance, when there are no observable differences between approximants of
degrees § and 4 + 2, then one can select § + 1 as the appropriate degree for the approx-
imant. The symbolic computational package Mathematica was utilized for evaluating
all the density approximants and suggests for plotting the graphs. The programming
code in Mathematica is available from the author upon request. The proposed density
approximation methodology is not only conceptually simple since it is essentially based
on simple transformations and a moment-matching technique, but it also is easy to pro-
gram. Three artificial numerical examples are proposed and approximated, which are
required a relatively large number of moments since the distributions considered exhib-
ited irregular features. Clearly, the more irregular the function to be approximated, the
more moments will be required. Furthermore, as a future research, one may consider
to investigate unartificial numerical examples in scientific fields which involve unusual
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symmetric distributions. Given the computational resources that are currently avail-
able, such approximants can quickly yield accurate percentage points, even when the
calculations involve a large number of moments.
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