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Abstract
This paper proposes a Bayesian test for the equivalence of survival functions in multiple groups. Proposed

Bayesian test use the model of Cox’s regression with time-varying coefficients. B-spline expansions are used
for the time-varying coefficients, and the proposed test use only the partial likelihood, which provides easier
computations. Various simulations of the proposed test and typical tests such as log-rank and Fleming and
Harrington tests were conducted. This result shows that the proposed test is consistent as data size increase.
Specifically, the power of the proposed test is high despite the existence of crossing hazards. The proposed
test is based on a Bayesian approach, which is more flexible when used in multiple tests. The proposed test
can therefore perform various tests simultaneously. Real data analysis of Larynx Cancer Data was conducted to
assess applicability.

Keywords: Cox’s regression, survival functions, log-rank test, Fleming and Harrington test, Bayes
factor, time-varying coefficients

1. Introduction

In a survival analysis, it is a traditional and important problem to identify the differences in survival
functions Sk, k = 1, . . . ,K, where the Sk denotes the survival function of the kth group. The survival
function is not scalar and makes finding differences in survival functions difficult. There are many
issues related to this problem. The log-rank test (Mantel, 1966) and the Fleming and Harrington test
(Harrington and Fleming, 1982) are commonly used for this.

If we define the hazard function for the kth group as

λk(t) = lim
∆↓0

P (t + ∆ > Tk ≥ t) /P (Tk ≥ t)
∆

, 0 < t < ∞,

where the lifetime of kth group follows the distribution of Tk, and temporarily assume that K = 2, then
log-rank test is very powerful when 0 < λ1(t)/λ2(t) = c < ∞.

However, in an actual data analysis, proportionality is a strong assumption, and the ratio of hazard
functions can vary. Especially, with multiple groups, the possibility of a varying hazard ratio is not
rare and greatly reduces the power of log-rank test. Weighted log-rank tests can be used for a varying
hazard ratio. The weights of these tests are determined by the Kaplan-Meier estimator (Kaplan and
Meier, 1958) of the survival function. The power levels of the tests depend on the weights. Differ-
ences in survival functions can occur earlier or later, and the weighted log-rank test can provide more
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weights earlier or later. To overcome this problem, Park and Jeong (1995) considered combinations
of weighted log-rank tests and Kim et al. (2001) considered random permutation tests and conducted
various simulations for various setups of differences of survival functions in two groups. In addition,
Muggeo and Tagliavia (2010) and Yang and Prentice (2005) also proposed novel tests for the crossing
hazard ratio. Various results of simulations were reported in Li et al. (2015). To the best of my knowl-
edge, there are few tests or simulation results for multiple groups with the exception of the (weighted)
log-rank test.

In this paper, Cox’s model and time-varying coefficients are introduced in Section 2. I propose
the test for the equivalence of survival functions in multiple groups in Section 3. Various simulations
were conducted to validate the consistency of the proposed test (especially when a crossing hazard
exists) in Section 4, and the analysis with real data is conducted in Section 5. Concluding remarks are
given in Section 6.

2. Preliminaries of Cox’ model with time-varying coefficients

We assume that the lifetime follows the law of a non-negative random variable T having survival
function S and that probability distribution of the residual lifetime can be obtained via P (T > s|T >
t) = S (s)/S (t), s ≥ t ≥ 0. In addition, S is represented by the cumulative hazard function A by

S (t) =
∏

s∈(0,t]
(1 − dA(s)).

Here, A is a monotonic increasing function defined of [0,∞) such that A(0) = 0 and limt→∞ A(t) = ∞.
If A is absolute continuous, then there exist a hazard function, λ, such that

A(t) =
∫ t

0
λ(s)ds and S (t) = exp

(
−

∫ t

0
λ(s)ds

)
. (2.1)

The model of (2.1) does not consider the heterogeneity of hazard functions, but we can introduce a
covariate z which takes into account the effects of the hazard function. To do this, we consider Cox’s
model (Cox, 1972) with time-varying coefficients:

λ (t|z) = exp
(
zTβ(t)

)
λ0(t), (2.2)

where λ0 is the baseline hazard function and β(t) = (β1(t), . . . , βK−1(t))T . If z is an indicator variable
such that

(0, . . . , 0)︸     ︷︷     ︸
K−1

T : control group (first group), (0, . . . , 0︸   ︷︷   ︸
k−1

, 1, 0, . . . , 0)︸   ︷︷   ︸
K−k−1

T : (k + 1)th group (k ≤ K − 1),

then

λ0(t) = λ
(
t|z = (0, 0, . . . , 0)T

)
= λ0(t),

λ1(t) = λ
(
t|z = (1, 0, . . . , 0)T

)
= exp (β1(t)) λ0(t),

...
...

...

λK−1(t) = λ
(
t|z = (0, 0, . . . , 1)T

)
= exp (βK−1(t)) λ0(t),
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where λk−1 is the hazard function of the kth group. Thus, testing of β1(·) = · · · = βK−1(·) ≡ 0 means
the testing of the equivalence of hazard and survival functions between all groups.

Meanwhile, the lifetime is usually right-censored by a censoring variable C, where T and C are
conditionally independent given z. Observed data are from a random sample, data △

= {Xi, zi, δi}ni=1,
where

Xi = min(Ti,Ci), δi = I(Ti ≤ Ci),

P(Ti > t|zi) = exp
(
−

∫ t

0
λ(s|zi)ds

)
,

Ci|zi ∼ Gi, Ci ⊥ Ti conditionally on zi,

and Gi is the distribution function of Ci.

3. Bayesian test for the equivalence of survival functions in multiple groups

3.1. Bayesian test

First, we review the Bayesian test. We assume that D1:n
△
= {Xi}ni=1 is generated from f (· |θk∗ ,Mk∗)

where k∗ ∈ {1, . . . ,K}. In addition, we let πk and pk be a prior for θk and a prior mass for model Mk,
i.e., π(Mk). Then posterior of each Mk is

π (Mk |D1:n) =
pk

∫ [∏n
i=1 f (Xi|θk,Mk)

]
πk(dθk |Mk)∑K

s=1 ps
∫ [∏n

i=1 f (Xi|θs,Ms)
]
πs(dθs|Ms)

. (3.1)

The Bayesian test is conducted using these values. If π(Mk∗ |D1:n) → 1, and π(Mk |D1:n) → 0 for
k , k∗, it implies the consistency of model selection. If this consistency is ensured, we can use these
posteriors of (3.1) in tests. Related to this approach, Bayes factors are used for model selection (Kass
and Raftery, 1995). Bayes factors are as:

Bk2k1 =

∫ [∏n
i=1 f (Xi|θk2 ,Mk2 )

]
πk2 (dθk2 |Mk2 )∫ [∏n

i=1 f (Xi|θk1 ,Mk1 )
]
πk1 (dθk1 |Mk1 )

,

where (k1, k2) ∈ {1, . . . ,K}2. Note that

π(Mk2 |D1:n)
π(Mk1 |D1:n)

=
Bk2k1π(Mk2 )
π(Mk1 )

, (3.2)

and Bk∗k → ∞ (k , k∗) is equal to π(Mk∗ |D1:n)→ 1 when 0 < mink π(Mk) ≤ maxk π(Mk) < 1.

3.2. Partial likelihood and Bayesian test

In the survival analysis, partial likelihood is often used instead of the probability density function. The
asymptotic properties of partial likelihood were studied by Andersen and Gill (1982), Tsiatis (1981)
and others. If we consider the time-varying coefficients model, the partial likelihood of Cox’s model
with time-varying coefficients is defined as

Lp (β; data) =
n∏

i=1

 exp
(
zT

i β(Xi)
)

∑
j:X j≥Xi

exp
(
zT

j β(Xi)
) 
δi
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for data. It is assumed that there exists a 0 < τ < ∞ such that Gi(τ) = 1, and Gi(τ−) < 1. Thus,
P(Xi ≤ τ) = 1.

In the model of (2.2), if the βks are constant function, the proportional hazards assumption holds,
whereas if βk functions are monotonic functions crossing 1, then crossing hazards exist. For βk, we use
the B-spline basis expansion such that

∑an
j=1 γk, jBan, j, where the Ban, js are the B-spline basis functions

with equally spaced knots, and an is a diverging sequence as n→ ∞.
Note that the βks in a certain function class such that (3.3) are approximated by B-spline basis

functions (sieve approach). For the test, we consider the model of ηk
∑an

l=1 γk,lBan,l, and priors such
that

π
(
dγ1,1 · · · dγK−1,an

)
=

K−1∏
k=1

an∏
l=1

h(γk,l)

 dγ1,1 · · · dγK−1,an ,

ηk |pk ∼ Bernoulli(pk),
pk ∼ Beta(1, αk), αk > 0.

Here, ∀(k, l) ∈ {1, . . . ,K − 1} × {1, . . . , an}, π
(|γk,l| > B

)
= 0, and

0 < c∗ ≤ inf
γ∈[−B,B]

h(γ) ≤ sup
γ∈[−B,B]

h(γ) ≤ c∗ < ∞.

The value of B > 0 is sufficiently large compared to L > 0 in (3.3), and αk is a hyper-parameter
resulting in π(ηk = 1) = 1/(1 + αk). Related to this approach, Kim and Lee (2016) proposed a
Bayesian test using the partial likelihood and time-varying coefficients model. They let K = 2, an =

O([(n/ log n)1/(2p+1)]), and define

ΘL
p =

{
β : sup

t∈[0,τ]

∣∣∣β(m)(t)
∣∣∣ < L, m = 0, . . . , p

}
, (3.3)

F0 = {β : β(·) ≡ 0} ,

where β(m) is the mth derivative function of β and β(0) = β. With this setup, Kim and Lee (2016)
claimed the consistency of the test

H0 : β1 ∈ F0 vs. H1 : β1 ∈ ΘL
p \ F0,

i.e., π(η1 = 0| data ) → 1 when data are generated from β1 in H0 and π(η1 = 1| data ) → 1 when data
are generated from β1 in H1. Thorough theoretical studies of this test are found in Kim et al. (2017).

Now we let η = (η1, . . . , ηK−1)T and consider various test such that

H0 : λ1 = · · · = λK−1 = λ0 vs. H1 : not H0,

H0 : λk = λ0 vs. H1 : not H0,

and H0 : λ1 = λK−1 = λ0 vs. not H0. Then, π(η , 0| data ), π(ηk , 0| data ) and π((η1, ηK−1) ,
(0, 0)| data ) can be used for these tests. We consider the typical test of

H0 : λ1 = · · · = λK−1 = λ0 vs. H1 : not H0.

In this test π(η , 0| data ) can be obtained from data, and it constitute a test statistic. If we have a
consistent Bayesian test, then we need criteria with which to reject H0 in a finite sample. We consider
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Table 1: Setups for simulated data

M0 M1c M1m

First group λ0(t) = 0.25 λ0(t) = 0.25 λ0(t) = 0.25
Second group λ1(t) = 0.25 λ1(t) = 0.25 λ1(t) = 0.25
Third group λ2(t) = 0.25 λ2(t) = 0.25 exp(0.1 + 1.5t) λ2(t) = 0.25 exp(3.0 + 1.5t)

three decision rules. The first is that π(η , 0| data ) > 0.5 denoted by Cm, and the second is that

π
(
η , 0| data

)
π
(
η = 0| data

) > π
(
η , 0

)
π
(
η = 0

) ,
denoted by Cp. The third rule is that of Kass and Raftery (1995). They held that if log10(BH1H0 )
exceeds 1/2, then H1 is substantial. If we let K = 3, this criterion with (3.2) implies that the value of

π(η , 0| data )
π(η = 0| data )

exceeds 9.49 when π(H0) = π(η = 0) = 0.25. This implies that π(η , 0| data ) > 9.49/10.49 � 0.90.
Moreover, in the test of H0 : λk = λ0 vs. H1 : not H0, the rejection criterion of H0 is that π(ηk =

1| data ) exceeds 0.76 when π(ηk = 1) = 0.50. We use the notation of CB for Kass and Raftery’s
(1995) criterion. We observed the behaviors of all approaches in simulation studies.

The advantage of the Bayesian test is that various tests can be done simultaneously, making it
superior to other tests which perform only one test, such as H0 : λ1 = · · · = λK−1 = λ0 vs. H1 : not H0
and H0 : λk = λ0 vs. H1 : not H0. From the proposed test, we can simultaneously identify groups
that have differences and those that do not.

3.2.1. Computations

We use truncated normal distributions for the hs, and a joint distribution (using partial likelihood) of
the random sample and random parameters along with the posterior of the random parameters are
in the Appendix A. In addition, Hastings (1970) and Metropolis et al. (1953) are referred to for
the algorithm with which to obtain posteriors. This paper used rejection sampling; however, more
advance studies can be found in Gilks and Wild (1992) and in Kim and Lee (2003).

4. Simulation results

4.1. Setups

In the simulations, three groups are considered. All three hazards are equal in the M0 setup. In the
M1c setup, one hazard ratio with respect to control group is 1 and the hazard ratio is crossing. In
the M1m setup, one hazard ratio is 1 and other hazard ratio is monotonically surpassing over 1. In
the simulations, all censoring variables are generated from exponential distributions truncated by 6,
which creates censoring rates of 0.25, 0.50, and 0.75. The data sizes considered are 90, 150, and 300,
where the data sizes of all groups are equal. The hazard functions of the simulated data (with 100
replications) are summarized in Table 1.

In B-spline basis expansion, we use five basis functions with a degree of 2, and use priors of
truncated normals for γk,l and let α1 = α2 = 1. Note that π(η1 = η2 = 0) = π(η1 = 0)π(η2 =

0) = 0.52 = 0.25, and the joint distribution and posterior are provided in Appendix A. From MCMC
(Markov chain Monte Carlo) we obtained 6,000 chains. We discarded the first 1,000 chains. We
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Table 2: Ratio of rejection of λ1 = λ2 = λ0 in the proposed test and others when data size are 90, 150, and 300,
respectively

Censoring Methods Data size 90 Data size 150 Data size 300
rates M0 M1c M1m M0 M1c M1m M0 M1c M1m

0.25

Proposed (CB) 0.04 0.63 0.89 0.03 0.97 1.00 0.04 1.00 1.00
Proposed (Cp) 0.12 0.82 0.95 0.07 0.99 1.00 0.09 1.00 1.00
Proposed (Cm) 0.30 0.97 1.00 0.20 1.00 1.00 0.14 1.00 1.00

Log-rank 0.06 0.57 0.95 0.06 0.83 1.00 0.06 1.00 1.00
Fleming & H(1) 0.03 0.24 0.81 0.08 0.36 1.00 0.04 0.59 1.00

Fleming & H(−1) 0.07 0.92 0.99 0.06 1.00 1.00 0.09 1.00 1.00

0.50

Proposed (CB) 0.05 0.34 0.58 0.03 0.65 0.90 0.06 0.99 0.99
Proposed (Cp) 0.17 0.56 0.80 0.13 0.87 0.95 0.09 0.99 1.00
Proposed (Cm) 0.38 0.71 0.92 0.24 0.95 0.99 0.14 1.00 1.00

Log-rank 0.06 0.26 0.75 0.05 0.46 0.96 0.03 0.80 1.00
Fleming & H(1) 0.05 0.11 0.60 0.05 0.18 0.87 0.03 0.37 0.98

Fleming & H(−1) 0.08 0.51 0.83 0.09 0.85 0.96 0.08 0.97 1.00

0.75

Proposed (CB) 0.02 0.12 0.28 0.08 0.28 0.47 0.01 0.57 0.82
Proposed (Cp) 0.20 0.40 0.52 0.17 0.47 0.70 0.10 0.73 0.89
Proposed (Cm) 0.42 0.67 0.80 0.34 0.76 0.85 0.25 0.87 0.96

Log-rank 0.05 0.08 0.39 0.08 0.14 0.65 0.02 0.29 0.90
Fleming & H(1) 0.04 0.06 0.32 0.09 0.06 0.59 0.04 0.19 0.85

Fleming & H(−1) 0.08 0.15 0.43 0.10 0.22 0.70 0.03 0.53 0.91

Fleming and Harrington test with ρ = 1 and Fleming and Harrington test with ρ = −1 are abbreviated to Fleming & H(1)
and Fleming & H(−1), respectively.

obtained a posterior of size 200 by the 25th thinning of the remaining chains. Figure B.1 in the
Appendix B shows the cumulative means of the posterior in a specific setup, which implies that the
ergodic condition is satisfied.

We compared the proposed test with the popular log-rank test and with Fleming and Harrington
test extended to multiple groups (the weights are Ŝ (t)ρ, ρ ∈ {1,−1}). For these tests, we use the func-
tion of survdiff in R, and significance levels are set to 0.05 for the rejection of H0. The frequentist test
and the Bayesian test are different; in addition, there is no common baseline with which to compare
these tests. Comparisons with other tests are only for the behavior of the proposed test, and not to
claim better performance.

4.2. Results
4.2.1. Comparison with other tests

Table 2 summarizes the rejection ratios observed in the simulations. It is obvious that the Fleming and
Harrington tests are very sensitive to the weights. In the M1c setup, the Fleming and Harrington test
of ρ = 1 has lower power while that of ρ = −1 has higher power. This can be interpreted as indicating
that an earlier crossing later requires more weight for higher power. Note that the differences of
survival functions increase with time in the M1c setup, it means that Fleming and Harrington test of
ρ = 1 gives lower weights later, which results in the lower power levels. Meanwhile, the power of the
log-rank test is between the Fleming and Harrington test with ρ = −1 and ρ = 1. In the M1m setup,
power levels of the log-rank test and the Fleming and Harrington tests are higher than those of the
M1c setup, but the trends are similar to the M1c setup.

Obviously the power levels decrease with higher censoring. The Fleming and Harrington test of
ρ = −1 has a somewhat higher value than the nominal coverage rate of 0.05 in the M0 setup. This can
be interpreted as indicative of a trade-off in the test.

The power levels in tests increase in all setups as the data size increases. When the data size is
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300, power levels of the log-rank tests and the Fleming and Harrington tests decrease in the M1c setup
as the censoring rates increase, while they become more steadily lower in the M1m setup. This implies
that traditional tests have lower power when there are crossing hazards and high censoring. However,
the power levels of these tests are high in the M1m setup when the sample size increases despite high
censoring.

In the proposed test (CB), the correct selection ratio of M0 are slightly larger than in other tests.
When the data size is 90, the power of the proposed test (CB) surpasses the log-rank test and the
Fleming and Harrington test with ρ = 1 in M1c and exceeds the Fleming and Harrington test with
ρ = 1 at the censoring rates of 0.25 and M1m. The power levels of the proposed test (CB) become
higher as the data size increase. The power levels of the proposed test (CB) are higher or nearly equal
to those in other tests with the exception of a censoring rate of 0.75 in M1m when the data size is 150.
The behaviors are very similar when the data size is 300. Compared to the case of a data size of 150,
the differences in the power levels subside slightly in the M1m setup. Note that Cp and Cm are not
recommended because the false selection ratios are too large in the M0 setup.

The proposed test is based on a nonparametric approach, which results in less gradual convergence
given a small sample size. Furthermore, high censoring degrades the efficiency of B-spline approx-
imation because differences in the functions can be found in non-censoring time points when using
partial likelihood. These outcomes explain the lower power in the event of a small sample size and
high censoring.

The proposed test result in the less lower with small sample size and the M1m setup, but the
proposed test outperformed nearly all other tests in the M1c setup, only the Fleming and Harrington
test with ρ = −1 can be comparable. In some cases (sample size 90, sample size 150 and censoring
rate <= 0.50), the Fleming and Harrington test with ρ = −1 performs better, but the proposed test
performs very well with an increase in the sample size.

4.2.2. Results of marginal tests

According to the proposed test, we can test the difference between a certain group with a control
group. If we consider the two tests of

T1; H0 : λ1 = λ0 vs. H1 : not H0,

T2; H0 : λ2 = λ0 vs. H1 : not H0,

then the proposed test can perform the two tests using posterior samples, the results of the M0 setup
are summarized in Figures 1 and 2. These plots show that the ratios of false selections (using CB) are
around 0.02–0.05.

In addition, Table 3 summarizes the results of the M1c and M1m setups. It is obvious that π(η1 =

0| data ) and π(η2 = 1| data ) increases with an increase in sample sizes. The acceptance ratio of
λ1 = λ0 are around 0.95 and 0.85, and rejection ratio of λ2 = λ0 depends on the sample size and
censoring rate. It shows a value of 1.00–0.50 in the most setups. The rejection ratio of λ2 = λ0
increases as the sample size increases and the censoring rate decreases. If the sample size exceeds 90
and the censoring rate is less than or equal to 0.50, then the rejection ratio of λ2 = λ0 is greater than
or equal to 0.82. In addition, the rejection ratio of λ2 = λ0 in the M1m setup is larger than in the M1c

setup. Finally, we ensure that the value of π(η2 = 1| data ) goes to 1 if the hazard ratio is far from 1,
the sample size is large, and the censoring rate is relatively lower. This demonstrates the consistency
of the proposed test.

The posterior of η1 = 0 is not affected by the censoring rates due to the equivalence of hazards.
Thus, the power levels of the proposed test are affected by the hazard ratio.
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(a) n = 90, c1 (b) n = 90, c2 (c) n = 90, c3

(d) n = 150, c1 (e) n = 150, c2 (f) n = 150, c3

(g) n = 300, c1 (h) n = 300, c2 (i) n = 300, c3

Figure 1: Plots of π(η1 = 1| data ) of 100 replications in the M0 setup. The c1, c2, and c3 represent the censoring
rates of 0.25, 0.50, and 0.75, respectively, and all values of bars are 0.76.

(a) n = 90, c1 (b) n = 90, c2 (c) n = 90, c3

(d) n = 150, c1 (e) n = 150, c2 (f) n = 150, c3

(g) n = 300, c1 (h) n = 300, c2 (i) n = 300, c3

Figure 2: Plots of π(η2 = 1| data ) of 100 replications in the M0 setup. The c1, c2, and c3 represent the censoring
rates of 0.25, 0.50, and 0.75, respectively, and all values of bars are 0.76.
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Table 3: Ratio of π(η1 = 1| data ) > 0.76 (denoted by r1) and π(η2 = 1| data ) > 0.76 (denoted by r2) for all
setups of M1c and M1m

Data sizes Censoring rates r1 r2

M1c M1m M1c M1m

90
0.25 0.08 0.08 0.79 0.93
0.50 0.13 0.15 0.49 0.65
0.75 0.13 0.13 0.15 0.39

150
0.25 0.12 0.11 0.99 1.00
0.50 0.12 0.05 0.82 0.95
0.75 0.13 0.14 0.33 0.68

300
0.25 0.13 0.08 1.00 1.00
0.50 0.13 0.08 0.99 1.00
0.75 0.08 0.06 0.68 0.89

4.3. Sensitivity analysis

In this section, sensitivity analyses were done with respect to an and αk. We used five B-spline basis
functions of order 2, requiring four inner knots. It is near the minimal number to capture the non-
linear structure in practical data analysis. In the sensitivity analysis, five basis functions / seven basis
functions and αk = 1 / αk = 2 are considered. In addition, we consider the censoring rates of 0.25 and
0.50, adequate to observe the overall trends. We observed rejection ratio of H0 : λ0 = λ1 = λ2. Table
B.1 in Appendix B summarizes the results. The number of B-spline basis functions does not greatly
effect the performance of the proposed test, but the effects of αk are strong when data the size is small
and the censoring rate is high. These results appear to be natural because αk is directly related to the
model priors. It is possible that a data size of 150 and a censoring rate 0.25–0.50 may mitigate the
affect of the prior.

5. Real data analysis

In the real data analysis, we consider Larynx Cancer Data from 90 patients. Among the 90 patients,
incidences of stages I, II, III, and IV cancer are 33, 17, 27, and 13 at the beginning of therapy. The
censoring rate is 0.44. Figure 3 represents the Kaplan-Meier estimate for each stage, showing that
the difference between stage I and stage II is not large, and that the survival probabilities abruptly
decrease at stages of III and IV. This figure also implies that the changes of the hazard ratios may not
be large.

A log-rank test of the equivalence of survival functions rejects the null hypothesis with a p-value
of less than 0.0001. In the proposed test, the number and degree of B-spline basis functions and αk

are equal to those in the simulations. Then, we have

π (ηi = 1) = 0.5, i = 1, 2, 3, and π(η1 = a, η2 = b, η3 = c) = π(η1 = a)π(η2 = b)π(η3 = c),

where (a, b, c) ∈ {0, 1}3. The η1, η2, and η3 are independent and π(
∑3

i=1 ηi = 0) = 0.125. Here,
stage I is the control group and the survival function of the (k + 1)th stage is equal to that of control
group is modeled by ηk = 0. We obtain 455,000 chains. The first 80,000 chains are discarded,
and obtain a posterior of size 5,000 by the 75th thinning of the remaining chains. Figure B.2 in the
Appendix B shows the cumulative means of the posteriors of η1, η2, and η3. All posteriors appear
stationary. Based on the criterion of CB, we can reject the null hypothesis that all hazards are equal
when π(

∑3
k=1 ηk > 0| data ) > 0.96. In the marginal test for stage II, III, and IV, we reject the null

hypothesis H0 when π(ηk = 1| data ) > 0.76.
The results of the proposed test indicate that π(

∑3
i=1 ηi > 0| data ) = 0.9975, π(η1 = 1| data ) =
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Figure 3: Plots of Kaplan-Meier estimates of 4 stages of Larynx Cancer Data.

0.2945, π(η2 = 1| data ) = 0.7582, and π(η3 = 1| data ) = 0.9943. Thus, we reject the null hypothesis
that all hazards are equal. In marginal tests, we only reject the null hypothesis with the hazards of
stage IV equal to that of stage I. We also conducted log-rank tests with stage I and stage II, stage I
and stage III, and stage I and stage IV. The p-values from these tests are 0.8663, 0.0800, and less
than 0.0001, respectively, showing that the results of the log-rank test and the proposed test are equal.
However, it appears that the power of the proposed test is higher than the pairwise log-rank tests
because π(η2 = 1|data) = 0.7582 is very close 0.76. This may have occurred because the proposed
test used all the data whereas the pairwise log-rank tests used partial data in each pair.

6. Concluding remarks
This paper proposed a Bayesian test for differences in hazard and survival functions. Numerical
studies and an actual data analysis show the consistency of the proposed Bayesian test and some of its
properties. The proposed Bayesian test worked well compared to typical tests; however, the alternative
contains crossing hazards. The power of the proposed Bayesian test is nearly equal to typical tests
or somewhat lower with a small sample size and higher censoring when the alternative is similar
to the degree of the proportionality. Nonetheless, the proposed Bayesian test has the advantages of
simultaneous tests and can therefore be very useful in the analysis of actual data.

Meanwhile, the effects of priors cannot be small with a small sample size. More advanced studies
of priors of the number of B-spline basis functions and the locations of knots are therefore necessary.
These can be done as future works.

Appendix A: Joint distribution (using the partial likelihood) and posteriors

1. Joint distribution (using the partial likelihood) is proportional to

Lp

η1

an∑
l=1

γ1,lBan,l, η2

an∑
l=1

γ2,lBan,l, . . . , ηK−1

an∑
l=1

γK−1,lBan,l

 ; data


×

K−1∏
k=1

an∏
l=1

N
(
γk,l|0, σ2

)
I
(|γk,l| < B

)
K−1∏

k=1

Ber (ηk |pk) Be (pk |1, αk)

 ,
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where N(·|µ, σ2),Ber(·|p) and Be(·|a, b) denote the probability density functions of the normal
distribution with mean µ and variance σ2, Bernoulli distribution with parameter p, and beta dis-
tribution with parameters a and b (mean of a/(a + b)), respectively.

2. Posteriors

(a) For γk,l|others,

π(γk,l|others) ∝ Lp

η1

an∑
l=1

γ1,lBan,l, η2

an∑
l=1

γ2,lBan,l, . . . , ηK−1

an∑
l=1

γK−1,lBan,l

 ; data


× N

(
γk,l|0, σ2

)
I
(|γk,l| < B

)
, (k, l) ∈ {1, . . . ,K − 1} × {1, . . . , an} .

(b) For ηk |others, π(ηk = 1|others) = An/(An + Bn) where

An = pkLp

η1

an∑
l=1

γ1,lBan,l, η2

an∑
l=1

γ2,lBan,l, . . . , ηK−1

an∑
l=1

γK−1,lBan,l

 ; data

 ∣∣∣∣∣∣
ηk=1

,

Bn = (1 − pk) Lp

η1

an∑
l=1

γ1,lBan,l, η2

an∑
l=1

γ2,lBan,l, . . . , ηK−1

an∑
l=1

γK−1,lBan,l

 ; data

 ∣∣∣∣∣∣
ηk=0

.

(c) For pk |others, π(pk |others) = Be (pk |1 + ηk, αk + (1 − ηk)).

Appendix B: Plots of posteriors and sensitivity analysis
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Figure B.1: Cumulative means of the posterior of η2 in one replication. These are obtained before thinning with
the M1c setup, data size of 150 and 0.25 censoring rate.
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Figure B.2: Cumulative means of the posteriors of η1, η2, and η3 in Larynx Cancer Data.

Table B.1: Sensitivity analysis of the proposed test (CB)

Censoring rates Data sizes Setups M0 M1c M1m Setups M0 M1c M1m

0.25
90

α = 1 0.04 0.63 0.89
α = 1 0.04 0.67 0.88

150 an = 5 0.03 0.97 1.00 an = 7 0.02 0.96 1.00
300 0.04 1.00 1.00 0.02 1.00 1.00

0.50
90

α = 1 0.05 0.34 0.58
α = 1 0.06 0.36 0.57

150 an = 5 0.03 0.65 0.90 an = 7 0.02 0.70 0.89
300 0.06 0.99 0.99 0.04 0.99 0.98

0.25
90

α = 2 0.00 0.21 0.62
α = 2 0.00 0.29 0.61

150 an = 5 0.00 0.82 0.96 an = 7 0.00 0.84 0.96
300 0.00 1.00 1.00 0.01 1.00 1.00

0.50
90

α = 2 0.00 0.02 0.26
α = 2 0.06 0.06 0.24

150 an = 5 0.00 0.27 0.63 an = 7 0.00 0.37 0.64
300 0.00 0.90 0.96 0.00 0.91 0.95

The values are the rejection ratios of H0 : λ0 = λ1 = λ2, where α = α1 = α2.
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