References
- Antoniadis, A. (1997). Wavelets in statistics: A review (with discussion), Journal of the Italian Statistical Association, 6, 97-144. https://doi.org/10.1007/BF03178905
- Breiman, L. (1995). Better subset regression using the nonnegative garrote, Technometrics, 37, 373-384. https://doi.org/10.1080/00401706.1995.10484371
- Chen, L. and Huang, J. Z. (2012). Sparse reduced-rand regression for simultaneous dimension reduction and variable selection, Journal of the American Statistical Association, 107, 1533-1545. https://doi.org/10.1080/01621459.2012.734178
- Chun, H. and Keles, S. (2010). Sparse partial least squares regression for simultaneous dimension reduction and variable selection, Journal of the Royal Statistical Society, Series B, 72, 3-25. https://doi.org/10.1111/j.1467-9868.2009.00723.x
- Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273
- Friedman, J., Hastie, T., Hofling, H. and Tibshirani, R. (2007). Pathwise coordinate optimization, The Annals of Applied Statistics, 1, 302-332. https://doi.org/10.1214/07-AOAS131
- Gower, J. C. and Dijksterhuis, G. B. (2004). Procrustes Problems, Oxford University Press, New York.
- Izenman, A. J. (1975). Reduced-rank regression for the multivariate linear model, Journal of Multivariate Analysis, 5, 248-264. https://doi.org/10.1016/0047-259X(75)90042-1
- Reinsel, G. C. and Velu, R. P. (1998). Multivariate Reduced-Rank Regression: Theory and Applications, Springer, New York.
- Tibshirani, R. J. (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society, Series B, 58, 267-288.
- Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generailized linear models, Statistical Modeliing, 3, 15-41. https://doi.org/10.1191/1471082X03st045oa
- Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society, Series B, 68, 49-67. https://doi.org/10.1111/j.1467-9868.2005.00532.x
Cited by
- Model selection algorithm in Gaussian process regression for computer experiments vol.24, pp.4, 2017, https://doi.org/10.5351/CSAM.2017.24.4.383
- Penalized rank regression estimator with the smoothly clipped absolute deviation function vol.24, pp.6, 2017, https://doi.org/10.29220/CSAM.2017.24.6.673