• 제목/요약/키워드: Starlike

검색결과 188건 처리시간 0.022초

SUFFICIENT CONDITIONS FOR ANALYTIC FUNCTIONS TO BE STARLIKE OF RECIPROCAL ORDER

  • Shalu Yadav;V. Ravichandran
    • 호남수학학술지
    • /
    • 제46권1호
    • /
    • pp.120-135
    • /
    • 2024
  • A normalized analytic function f, defined on the unit disk 𝔻, is starlike of reciprocal order α > 1 if the real part of f(z)/(zf'(z)) is less than α for all z ∈ 𝔻. By utilizing the theory of differential subordination, we establish several sufficient conditions for analytic functions defined on 𝔻 to be starlike of reciprocal order. Additionally, we investigate the conditions under which the function f(z)/(zf'(z)) is subordinate to the function 1 + (α - 1)z. This subordination, in turn, is sufficient for the function f to be starlike of reciprocal order α > 1.

Coefficient Estimates for Sãlãgean Type λ-bi-pseudo-starlike Functions

  • Joshi Santosh;Altinkaya, Sahsene;Yalcin, Sibel
    • Kyungpook Mathematical Journal
    • /
    • 제57권4호
    • /
    • pp.613-621
    • /
    • 2017
  • In this paper, we have constructed subclasses of bi-univalent functions associated with ${\lambda}$-bi-pseudo-starlike functions in the unit disc U. Furthermore we established bound on the coefficients for the subclasses $S^{\lambda}_{\Sigma}(k,{\alpha})$ and $S^{\lambda}_{\Sigma}(k,{\beta})$.

QUASICONFORMAL EXTENSIONS OF STARLIKE HARMONIC MAPPINGS IN THE UNIT DISC

  • Hamada, Hidetaka;Honda, Tatsuhiro;Shon, Kwang Ho
    • 대한수학회보
    • /
    • 제50권4호
    • /
    • pp.1377-1387
    • /
    • 2013
  • Let $f$ be a harmonic mapping on the unit disc ${\Delta}$ in $\mathbb{C}$. We give some condition for $f$ to be a quasiconformal homeomorphism on ${\Delta}$ and to have a quasiconformal extension to the whole plane $\bar{\mathbb{C}}$. We also obtain quasiconformal extension results for starlike harmonic mappings of order ${\alpha}{\in}(0,1)$.

THIRD HANKEL DETERMINANTS FOR STARLIKE AND CONVEX FUNCTIONS OF ORDER ALPHA

  • Orhan, Halit;Zaprawa, Pawel
    • 대한수학회보
    • /
    • 제55권1호
    • /
    • pp.165-173
    • /
    • 2018
  • In this paper we obtain the bounds of the third Hankel determinants for the classes $\mathcal{S}^*({\alpha})$ of starlike functions of order ${\alpha}$ and $\mathcal{K}({\alpha}$) of convex functions of order ${\alpha}$. Moreover,we derive the sharp bounds for functions in these classes which are additionally 2-fold or 3-fold symmetric.

On a Class of Analytic Functions Related to the Starlike Functions

  • Gao, Chunyi;Zhou, Shiqiong
    • Kyungpook Mathematical Journal
    • /
    • 제45권1호
    • /
    • pp.123-130
    • /
    • 2005
  • In this paper we discuss a class of analytic functions related to the starlike functions in the unit disk. We prove that this class belongs to the class of close-to-convex functions, we obtain the sharp coefficient upper bounds and distortion theorem of this class, we also get the convexity radius of this class.

  • PDF

HARMONIC MEROMORPHIC STARLIKE FUNCTIONS

  • Jahangiri, Jay, M.
    • 대한수학회보
    • /
    • 제37권2호
    • /
    • pp.291-301
    • /
    • 2000
  • We give sufficient coefficient conditions for a class of meromorphic univalent harmonic functions that are starlike of some order. Furthermore, it is shown that these conditions are also necessary when the coefficients of the analytic part of the function are positive and the coefficients of the co-analytic part of the function are negative. Extreme points, convolution and convex combination conditions for these classes are also determined. Fianlly, comparable results are given for the convex analogue.

  • PDF

CLASS-MAPPING PROPERTIES OF THE HOHLOV OPERATOR

  • Mishra, Akshaya K.;Panigrahi, Trailokya
    • 대한수학회보
    • /
    • 제48권1호
    • /
    • pp.51-65
    • /
    • 2011
  • In the present paper sufficient conditions, in terms of hyper-geometric inequalities, are found so that the Hohlov operator preserves a certain subclass of close-to-convex functions (denoted by $R^{\tau}$ (A, B)) and transforms the classes consisting of k-uniformly convex functions, k-starlike functions and univalent starlike functions into $\cal{R}^{\tau}$ (A, B).