KYUNGPOOK Math. J. 57(2017), 613-621
https://doi.org/10.5666/KMJ.2017.57.4.613
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

## Coefficient Estimates for Sãlãgean Type $\lambda$-bi-pseudo-starlike Functions

Santosh Joshi<br>Department of Mathematics, Walchand College of Engineering, Sangli 416415, India<br>$e$-mail: joshisb@hotmail.com<br>Şahsene Altinkaya* and Sibel Yalçin<br>Department of Mathematics, Faculty of Arts and Science, Uludag University, 16059, Bursa, Turkey<br>$e$-mail: sahsene@uludag.edu.tr and syalcin@uludag.edu.tr

Abstract. In this paper, we have constructed subclasses of bi-univalent functions associated with $\lambda$-bi-pseudo-starlike functions in the unit disc $U$. Furthermore we established bound on the coefficients for the subclasses $S_{\Sigma}^{\lambda}(k, \alpha)$ and $S_{\Sigma}^{\lambda}(k, \beta)$.

## 1. Introduction

Let $A$ denote the class of functions $f$ which are analytic in the open unit disc $U=\{z: z \in \mathbb{C}$ and $|z|<1\}$, of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

Let $S$ be the subclass of $A$ consisting of the form (1.1) which are univalent in $U$. It is well known that every function $f \in S$ has an inverse $f^{-1}$, satisfying $f^{-1}(f(z))=z,(z \in U)$ and $f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$, where

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.2}
\end{equation*}
$$

A function $f \in A$ is said to be bi-univalent in $U$ if both $f$ and $f^{-1}$ are univalent in $U$. Let $\Sigma$ denote the class of bi-univalent functions defined in the unit disc $U$. For a brief history and interesting examples of functions in the class $\Sigma$, see the

## * Corresponding Author.

Received September 28, 2016; revised October 2, 2017; accepted October 30, 2017.
2010 Mathematics Subject Classification: 30C45, 30C50.
Key words and phrases: analytic functions, bi-starlike functions, coefficient bounds.
pioneering work on this area by Srivastava et al. [15], which has apparently revived the study of bi-univalent functions in recent years. From the work of Srivastava et al. [15], we recall the following examples of functions in the class $\Sigma$ :

$$
\frac{z}{1-z}, \quad-\log (1-z), \quad \frac{1}{2} \log \left(\frac{1+z}{1-z}\right) .
$$

However, the familiar Koebe function is not a member of the bi-univalent function class $\Sigma$. Such other common examples of functions in $S$ as

$$
z-\frac{z^{2}}{2} \quad \text { and } \quad \frac{z}{1-z^{2}}
$$

are also not members of $\Sigma$ (see [15]).
Historically, Lewin [11] studied the class of bi-univalent functions, obtaining the bound 1.51 for the modulus of the second coefficient $\left|a_{2}\right|$. Subsequently, Brannan and Clunie [4] conjectured that $\left|a_{2}\right| \leqq \sqrt{2}$ for $f \in \Sigma$. Later on, Netanyahu [12] showed that max $\left|a_{2}\right|=\frac{4}{3}$ if $f(z) \in \Sigma$. Brannan and Taha [5] introduced certain subclasses of the bi-univalent function class $\Sigma$ similar to the familiar subclasses $\mathcal{S}^{\star}(\beta)$ and $\mathcal{K}(\beta)$ of starlike and convex functions of order $\beta(0 \leqq \beta<1)$ in $\mathbb{U}$, respectively (see [12]). The classes $\mathcal{S}_{\Sigma}^{\star}(\beta)$ and $\mathcal{K}_{\Sigma}(\beta)$ of bi-starlike functions of order $\beta$ in $\mathbb{U}$ and bi-convex functions of order $\beta$ in $\mathbb{U}$, corresponding to the function classes $\mathcal{S}^{\star}(\beta)$ and $\mathcal{K}(\beta)$, were also introduced analogously. For each of the function classes $\mathcal{S}_{\Sigma}^{\star}(\beta)$ and $\mathcal{K}_{\Sigma}(\beta)$, they found non-sharp estimates for the initial coefficients. Recently, motivated substantially by the aforementioned work on this area Srivastava et al. [15], many authors investigated the coefficient bounds for various subclasses of bi-univalent functions (see, for example, $[2,6,7,17,18,19,20,21]$ ). Not much is known about the bounds on the general coefficient $\left|a_{n}\right|$ for $n \geqq 4$. In the literature, there are only a few works determining the general coefficient bounds for $\left|a_{n}\right|$ for the analytic bi-univalent functions (see, for example, $[1,8,9])$. The coefficient estimate problem for each of the coefficients $\left|a_{n}\right|(n \in \mathbb{N} \backslash\{1,2\} ; \mathbb{N}=\{1,2,3, \cdots\})$ is still an open problem.

For $f$ belongs to $A$, Sãlãgean (see [14]) defined differential operator $D^{k}, k \in$ $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, by

$$
\begin{aligned}
D^{0} f(z)= & f(z) ; \\
D^{1} f(z)= & D f(z)=z f^{\prime}(z) ; \\
& \vdots \\
D^{k} f(z)= & D\left(D^{k-1} f(z)\right) .
\end{aligned}
$$

We note that

$$
D^{k} f(z)=z+\sum_{n=2}^{\infty} n^{k} a_{n} z^{n}
$$

In this paper, motivated by the earlier work of Babalola [3] and Joshi et. al. [10], we aim at introducing two new subclasses of the function class $\Sigma$ and find estimate on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses of the function class $\Sigma$ employing the techniques used earlier by Srivastava et al. [15] (see also $[7,16,22,23,24])$.

We note the following lemma required for obtaining our results.
Lemma 1.1.([13]) If $p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots$ is an analytic function in $U$ with positive real part, then

$$
\left|p_{n}\right| \leq 2 \quad(n \in \mathbb{N}=\{1,2, \ldots\})
$$

and

$$
\begin{equation*}
\left|p_{2}-\frac{p_{1}^{2}}{2}\right| \leq 2-\frac{\left|p_{1}\right|^{2}}{2} \tag{1.3}
\end{equation*}
$$

## 2. Coefficient Bounds for the Function Class $S_{\Sigma}^{\lambda}(k, \alpha)$

Definition 2.1. A function $f \in \Sigma$ is said to be in the class $S_{\Sigma}^{\lambda}(k, \alpha)$ if the following conditions are satisfied:

$$
\begin{equation*}
\left|\arg \left(\frac{z\left[\left(D^{k} f(z)\right)^{\prime}\right]^{\lambda}}{D^{k} f(z)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, \quad \lambda \geq 1, \quad z \in U) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(\frac{w\left[\left(D^{k} g(w)\right)^{\prime}\right]^{\lambda}}{D^{k} g(w)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, \lambda \geq 1, w \in U) \tag{2.2}
\end{equation*}
$$

where the function $g=f^{-1}$.
Theorem 2.2. Let $f$ given by (1.1) be in the class $S_{\Sigma}^{\lambda}(k, \alpha), 0<\alpha \leq 1$. Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{(2 \lambda-1)(2 \lambda+\alpha-1)}}
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \alpha}{(3 \lambda-1)}+\frac{4 \alpha^{2}}{(2 \lambda-1)^{2}}
$$

Proof. Let $f \in S_{\Sigma}^{\lambda}(k, \alpha)$. Then

$$
\begin{equation*}
\frac{z\left[\left(D^{k} f(z)\right)^{\prime}\right]^{\lambda}}{D^{k} f(z)}=[p(z)]^{\alpha} \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{w\left[\left(D^{k} g(w)\right)^{\prime}\right]^{\lambda}}{D^{k} g(w)}=[q(w)]^{\alpha} \tag{2.4}
\end{equation*}
$$

where $g=f^{-1}, p, q$ in $P$ and have the forms

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots
$$

and

$$
q(w)=1+q_{1} w+q_{2} w^{2}+\cdots .
$$

Now, equating the coefficients in (2.3) and (2.4), we get

$$
\begin{equation*}
(3 \lambda-1) 3^{k} a_{3}+\left(2 \lambda^{2}-4 \lambda+1\right) 2^{2 k} a_{2}^{2}=\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2}, \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
-(2 \lambda-1) 2^{k} a_{2}=\alpha q_{1}, \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
\left(2 \lambda^{2}+2 \lambda-1\right) 2^{2 k} a_{2}^{2}-(3 \lambda-1) 3^{k} a_{3}=\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2} . \tag{2.8}
\end{equation*}
$$

From (2.5) and (2.7) we obtain

$$
\begin{equation*}
p_{1}=-q_{1} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
(2 \lambda-1)^{2} 2^{2 k+1} a_{2}^{2}=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right) . \tag{2.10}
\end{equation*}
$$

Also from (2.6), (2.8) and (2.10) we have

$$
\begin{aligned}
\left(2 \lambda^{2}-\lambda\right) 2^{2 k+1} a_{2}^{2} & =\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}+q_{1}^{2}\right) \\
& =\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2} \frac{(2 \lambda-1)^{2} 2^{2 k+1}}{\alpha^{2}} a_{2}^{2} .
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
a_{2}^{2}=\frac{\alpha^{2}\left(p_{2}+q_{2}\right)}{(2 \lambda-1)(2 \lambda+\alpha-1) 2^{2 k}} . \tag{2.11}
\end{equation*}
$$

Applying Lemma 1.1 for the coefficients $p_{2}$ and $q_{2}$, we obtain

$$
\left|a_{2}\right| \leq \frac{2^{1-k} \alpha}{\sqrt{(2 \lambda-1)(2 \lambda+\alpha-1)}} .
$$

Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (2.8) from (2.6), we obtain

$$
2(3 \lambda-1) 3^{k} a_{3}-2(3 \lambda-1) 2^{2 k} a_{2}^{2}=\alpha\left(p_{2}-q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}-q_{1}^{2}\right)
$$

Then, in view of (1.3) and (2.10), we have

$$
\left|a_{3}\right| \leq \frac{2 \alpha}{(3 \lambda-1) 3^{k}}+\frac{4 \alpha^{2}}{(2 \lambda-1)^{2} 2^{2 k}}
$$

This completes the proof of Theorem 2.2.
Putting $k=0$ in Theorem 2.2, we have
Remark 2.3. ([10]) Let $f$ given by (1.1) be in the class $S_{\Sigma}^{\lambda}(\alpha), 0<\alpha \leq 1$. Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{(2 \lambda-1)(2 \lambda+\alpha-1)}}
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \alpha}{(3 \lambda-1)}+\frac{4 \alpha^{2}}{(2 \lambda-1)^{2}}
$$

## 3. Coefficient Bounds for the Function Class $S_{\Sigma}^{\lambda}(k, \beta)$

Definition 3.1. A function $f \in \Sigma$ is said to be in the class $S_{\Sigma}^{\lambda}(k, \beta)$ if the following conditions are satisfied:

$$
\begin{equation*}
\Re\left(\frac{z\left[\left(D^{k} f(z)\right)^{\prime}\right]^{\lambda}}{D^{k} f(z)}\right)>\beta \quad(0 \leq \beta<1, \lambda \geq 1, z \in U) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left(\frac{w\left[\left(D^{k} g(w)\right)^{\prime}\right]^{\lambda}}{D^{k} g(w)}\right)>\beta \quad(0 \leq \beta<1, \lambda \geq 1, w \in U) \tag{3.2}
\end{equation*}
$$

where the function $g=f^{-1}$.
Theorem 3.2. Let $f$ given by (1.1) be in the class $S_{\Sigma}^{\lambda}(k, \beta), 0 \leq \beta<1$. Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{\lambda(2 \lambda-1) 2^{2 k}}}
$$

and

$$
\left|a_{3}\right| \leq \frac{2(1-\beta)}{(3 \lambda-1) 3^{k}}+\frac{4(1-\beta)^{2}}{(2 \lambda-1)^{2} 2^{2 k}}
$$

Proof. Let $f \in S_{\Sigma}^{\lambda}(k, \beta)$. Then

$$
\begin{equation*}
\frac{z\left[\left(D^{k} f(z)\right)^{\prime}\right]^{\lambda}}{D^{k} f(z)}=\beta+(1-\beta) p(z) \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{w\left[\left(D^{k} g(w)\right)^{\prime}\right]^{\lambda}}{D^{k} g(w)}=\beta+(1-\beta) q(w) \tag{3.4}
\end{equation*}
$$

where $p, q \in P$ and $g=f^{-1}$.
It follows from (3.3) and (3.4) that

$$
\begin{equation*}
(2 \lambda-1) 2^{k} a_{2}=(1-\beta) p_{1}, \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
(3 \lambda-1) 3^{k} a_{3}+\left(2 \lambda^{2}-4 \lambda+1\right) 2^{2 k} a_{2}^{2}=(1-\beta) p_{2}, \tag{3.6}
\end{equation*}
$$

and

$$
\begin{gather*}
-(2 \lambda-1) 2^{k} a_{2}=(1-\beta) q_{1}  \tag{3.7}\\
\left(2 \lambda^{2}+2 \lambda-1\right) 2^{2 k} a_{2}^{2}-(3 \lambda-1) 3^{k} a_{3}=(1-\beta) q_{2} \tag{3.8}
\end{gather*}
$$

From (3.6) and (3.8) we obtain

$$
\begin{equation*}
p_{1}=-q_{1} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
(2 \lambda-1)^{2} 2^{2 k+1} a_{2}^{2}=(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) . \tag{3.10}
\end{equation*}
$$

Also from (3.6), (3.8) and (3.9) we have

$$
\left(2 \lambda^{2}-\lambda\right) 2^{2 k+1} a_{2}^{2}=(1-\beta)\left(p_{2}+q_{2}\right) .
$$

Therefore, we have

$$
\begin{equation*}
a_{2}^{2}=\frac{(1-\beta)\left(p_{2}+q_{2}\right)}{\left(2 \lambda^{2}-\lambda\right) 2^{2 k+1}} . \tag{3.11}
\end{equation*}
$$

Appyling Lemma 1.1 for the coefficients $p_{2}$ and $q_{2}$, we obtain

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{\lambda(2 \lambda-1) 2^{2 k}}} .
$$

Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (3.8) from (3.6), we obtain

$$
2(3 \lambda-1) 3^{k} a_{3}-2(3 \lambda-1) 2^{2 k} a_{2}^{2}=(1-\beta)\left(p_{2}-q_{2}\right)
$$

Then, in view of (1.3) and (3.11), we have

$$
\left|a_{3}\right| \leq \frac{2(1-\beta)}{(3 \lambda-1) 3^{k}}+\frac{4(1-\beta)^{2}}{(2 \lambda-1)^{2} 2^{2 k}}
$$

This completes the proof of Theorem 3.2.
Putting $k=0$ in Theorem 3.2, we have
Remark 3.3.([10]) Let $f$ given by (1.1) be in the class $S_{\Sigma}^{\lambda}(\beta), 0 \leq \beta<1$. Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{\lambda(2 \lambda-1)}}
$$

and

$$
\left|a_{3}\right| \leq \frac{2(1-\beta)}{(3 \lambda-1)}+\frac{4(1-\beta)^{2}}{(2 \lambda-1)^{2}}
$$

Taking $k=0$ and $\lambda=1$ in Theorems 2.2 and 3.2 one can get the following corollaries.

Corollary 3.4. Let $f$ given by (1.1) be in the class $S_{\Sigma}(\alpha), 0<\alpha \leq 1$. Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{\alpha+1}}
$$

and

$$
\left|a_{3}\right| \leq \alpha+4 \alpha^{2}
$$

Corollary 3.5. Let $f$ given by (1.1) be in the class $S_{\Sigma}(\beta), 0 \leq \beta<1$. Then

$$
\left|a_{2}\right| \leq \sqrt{2(1-\beta)}
$$

and

$$
\left|a_{3}\right| \leq(1-\beta)+4(1-\beta)^{2}
$$

## References

[1] Ş. Altınkaya and S. Yalçın, Faber polynomial coefficient bounds for a subclass of biunivalent functions, C. R. Acad. Sci. Paris, 353(12)(2015), 1075-1080.
[2] Ş. Altınkaya and S. Yalçın, Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, J. Funct. Spaces, Article ID 145242 (2015), 5 pp .
[3] K. O. Babalola, On $\lambda$-pseudo-starlike functions, J. Class. Anal., 3(2)(2013), 137-147.
[4] D. A. Brannan and J. G. Clunie, Aspects of contemporary complex analysis, Proceedings of the NATO Advanced Study Instute Held at University of Durham, New York: Academic Press, 1979.
[5] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Stud. Univ. Babeş-Bolyai Math., 31(2)(1986), 70-77.
[6] M. Çağlar, E. Deniz and H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J. Math., 41(2017), 694-706.
[7] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573.
[8] S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris, 352(1)(2014), 17-20.
[9] S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Acad. Sci. Paris, 354(2016), 365-370.
[10] S. Joshi, S. Joshi and H. Pawar, On some subclasses of bi-univalent functions associated with pseudo-starlike functions, J. Egyptian Math. Soc., 24(2016), 522-525.
[11] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68.
[12] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Ration. Mech. Anal., 32(1969), 100-112.
[13] C. Pommerenke, Univalent functions, Vandenhoeck by Ruprecht, Göttingen, 1975.
[14] G. S. Sãlãgean, Subclasses of univalent functions, Complex Analysis - Fifth Romanian Finish Seminar, Bucharest, 1(1983), 362-372.
[15] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(10)(2010), 1188-1192.
[16] H. M. Srivastava, S. Bulut, M. Çağlar and N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27(2013), 831-842.
[17] H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J., 7(2)(2014), 1-10.
[18] H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(2015), 1839-1845.
[19] H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc., 23(2015), 242-246.
[20] H. M. Srivastava, S. B. Joshi, S. S. Joshi and H. Pawar, Coefficient estimates for certain subclasses of meromorphically bi-univalent functions, Palest. J. Math., 5(2016), 250-258.
[21] H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of $m$-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B Engl. Ed., 36(2016), 863-871.
[22] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat., 28(2017), 693-706.
[23] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25(2012), 990-994.
[24] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218(2012), 11461-11465.

