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SUFFICIENT CONDITIONS FOR ANALYTIC FUNCTIONS

TO BE STARLIKE OF RECIPROCAL ORDER

Shalu Yadav and V. Ravichandran∗

Abstract. A normalized analytic function f , defined on the unit disk D,
is starlike of reciprocal order α > 1 if the real part of f(z)/(zf ′(z)) is less
than α for all z ∈ D. By utilizing the theory of differential subordination,
we establish several sufficient conditions for analytic functions defined

on D to be starlike of reciprocal order. Additionally, we investigate the

conditions under which the function f(z)/(zf ′(z)) is subordinate to the
function 1 + (α − 1)z. This subordination, in turn, is sufficient for the

function f to be starlike of reciprocal order α > 1.

1. Introduction

Throughout this paper, we shall be interested in functions belonging to the
class H[a, n], which consists of all analytic functions f defined on the unit
disk D having Taylor series expansion f(z) = a + anz

n + an+1z
n+1 + · · · . In

particular, we define A as the set {zg : g ∈ H[1, 1]} representing all analytic
functions f : D → C normalized by the conditions f(0) = 0 and f ′(0) = 1.
The condition f ′(0) = 1 shows that the function f is locally univalent at the
origin. In this paper, we shall consider functions f that are locally univalent
in D; these are precisely the functions whose derivative is non-vanishing in D.
The subclass of A consisting of all the functions univalent in D is denoted by
S. A function f ∈ A is starlike if f(D) is starlike with respect to the origin and
is called convex if f(D) is convex. Analytically, a function f ∈ A is starlike if
it satisfies the inequality Re(zf ′(z)/f(z)) > 0 for all z ∈ D and it is convex if
Re(1+zf ′′(z)/f ′(z)) > 0. The subclasses A of all starlike functions and convex
functions are respectively denoted by ST and CV. One way to generalize these
two classes is to require the corresponding quantities

QST (z) :=
zf ′(z)

f(z)
and QCV (z) := 1 +

zf ′′(z)

f ′(z)
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to lie in some half-plane; it can be either Hα = {w ∈ C : Rew > α} when
α < 1 or Hα = {w ∈ C : Rew < α} when α > 1. These choices gives
respectively the class ST (α) of all functions starlike of reciprocal order α,
0 ⩽ α < 1, that satisfy the inequality Re(f(z)/(zf ′(z))) > α for all z ∈ D and
the class M(α) of all analytic functions starlike of order α, α > 1, satisfying
the inequality Re(zf ′(z)/f(z)) < α. Though we have called the functions in
the classes ST (α) and M(α) as starlike functions of order α, the choice of
symbol is historical; with the notation M(α), it was introduced and studied
by Uralegaddi, Ganigi and Sarangi [13]. Apart from the notations, the main
difference is the univalence of the functions. The functions in the class ST (α)
are univalent while the functions in the class M(α) need not be univalent. Yet
another way is to consider the reciprocal of QST to lie in the half-plane Hα or
Hα. This leads to the classes ST R(α), studied in [7], and MR(α) of all starlike
functions of reciprocal order α, α > 1. The latter class MR(α) consists of all
analytic functions satisfying Re(f(z)/zf ′(z)) < α, α > 1. For a function p with
positive real part, it is easy to see that Re(1/p(z)) ⩽ 1/(Re p(z)) and applying
this with p(z) = zf ′(z)/f(z), we see that every starlike function of order 1/α,
α > 1, is starlike of reciprocal order α > 1. However, it is worth mentioning
that a function in the class MR(α) need not be starlike. Several authors
[2, 3, 1, 4, 6, 7, 8, 5, 12] have examined the required criteria for starlikeness,
coefficient estimates, and subordination results for various classes of analytic
functions of reciprocal order.

Our primary interest in this paper is to give several sufficient condition for
functions to belong to the class M(α). We make use of the theory of differen-
tial subordination developed by Miller and Mocanu [11]. We first investigate
admissibility conditions for functions to belong to the class MR(α), and apply
it obtained various sufficient conditions for functions to be in class MR(α). We
also obtain some criteria for the subordination f(z)/(zf ′(z)) ≺ 1 + (α− 1)z.

2. Admissibility Conditions

Though the field of complex numbers is unordered, the concept of subordi-
nation in the complex plane play an analogues role of inequalities on the real
line. For two analytic functions f and g on open unit disk D = {z ∈ C : |z| < 1},
the function f is said to be subordinate to the function g, written as f ≺ g, if
there is a Schwarz function w : D → D with w(0) = 0 satisfying f(z) = g(w(z))
for all z ∈ D. If g is a univalent function, then f ≺ g if and only if f(0) = g(0)
and f(D) ⊂ g(D). Let p be an analytic function defined in the unit disk and
let the function ψ : C3 ×D → C. For given domains Ω and ∆ in C, the theory
of differential subordination deals with the following implication:

{ψ(p(z), zp′(z), z2p′′(z); z) : z ∈ D} ⊂ Ω =⇒ {p(z) : z ∈ D} ⊂ ∆.(1)
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If Ω and ∆ are simply connected domains that are not the whole complex
plane, then by Riemann mapping theorem, there exists univalent functions
h and q defined on D, that maps D respectively onto Ω and ∆ such that
h(0) = ψ(p(0), 0, 0; 0) and q(0) = p(0). In addition if ψ(p(z), zp′(z), z2p′′(z); z)
is analytic then the implication (1) can be written as follows:

ψ(p(z), zp′(z), z2p′′(z) ≺ h(z) =⇒ p(z) ≺ q(z).

The subordination ψ(p(z), zp′(z), z2p′′(z)) ≺ h(z) is known as second order
differential subordination. If p is an analytic function and satisfies the second-
order differential subordination

ψ(p(z), zp′(z), z2p′′(z) ≺ h(z),(2)

then the function p is called a solution of the differential subordination (2). If q
is a univalent function and the subordination p ≺ q holds for all p satisfying (2),
then the function q is said to be a dominant of all solutions of the differential
subordination (2). Milller and Mocanu have developed a comprehensive theory
of differential subordination and its applications, see[9, 10, 11].

Definition 2.1. [11] The set Q denotes the set of all functions q that are
analytic and injective on D \ E(q), where

E(q) =

{
ζ ∈ ∂D : lim

z→ζ
q(z) = ∞

}
,

and are such that q′(ζ) ̸= 0 for ζ ∈ ∂D \ E(q).

Definition 2.2. [11] Let Ω be a set in C, q ∈ Q and n be a positive
integer. The class of admissible functions Ψn[Ω, q], consists of those functions
ψ : C3 × D → C, that satisfy the admissibility condition:

ψ(r, s, t; z) /∈ Ω,

whenever r = q(ζ), s = mζq′(ζ),

Re

(
t

s
+ 1

)
⩾ mRe

(
ζq′′(ζ)

q′(ζ)
+ 1

)
,

z ∈ D, ζ ∈ D \ E(q) and m ⩾ n. We write Ψ1[Ω, q] as Ψ[Ω, q].

For the function q(z) = (1 + z)/(1 − z), Definition 2.2 gives the following
admissibility criteria:

Definition 2.3. [11] Let Ω be a subset of C. The class Pn(Ω) of admis-
sible functions consists of all the functions ψ : C3 × D → C that satisfy the
admissibility condition

ψ(iρ, σ, µ+ iν; z) /∈ Ω,

when ρ ∈ R, σ ⩽ −n(1 + ρ2)/2, σ + µ ⩽ 0 and z ∈ D.

For the function w(z) = z, we obtain the following admissibility conditions
from Definition 2.2.
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Definition 2.4. [11] Let Ω be a subset of C. The class Bn(Ω) of admissible
functions consists of all functions ψ : C3×D → C that satisfy the admissibility
condition

ψ(eiθ,Keiθ, L; z) /∈ Ω,

when K ⩾ n, Re(Leiθ) ⩾ (n− 1)K, θ ∈ R and z ∈ D.

The following theorem is a fundamental finding in the study of first and
second order differential subordination.

Theorem 2.5. [11][Miller-Mocanu Theorem] Let the function ψ be in the
class Ψn[h, q] with q(0) = a. If the function p is in the classH[a, n], the function
ψ(p(z), zp′(z), z2p′′(z); z) is analytic in D, and satisfies

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z),(3)

then the function p is subordinate to the function q.

The class P of Carathéodory functions consists of all functions p : D → C
with p(0) = 1 satisfying Re(p(z)) > 0. For the function q(z) = (1 + z)/(1− z),
Theorem 2.5 becomes

Theorem 2.6. [11] Let the function ψ be in the class Pn(Ω). If the function
p is in the class H[1, n] satisfies

ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω (z ∈ D),
then p belongs to the class P.

For the function q(z) = z, Theorem 2.5 becomes

Theorem 2.7. [11] Let the function ψ be in the class ∈ Bn(Ω). If the
function w is in the class H[0, n], satisfies

ψ(w(z), zw′(z), z2w′′(z); z) ∈ Ω (z ∈ D),
then w belongs to the class B0.

We need the following definition of admissibility function to prove the sub-
ordination result for the class MR(α). .

Definition 2.8. Let Ω be a subset of C. The class MR(Ω) of admissible
functions consists of all the functions ψ : C3×D → C that satisfy the admissible
condition

ψ(r, s; z) /∈ Ω,(4)

where

1

r
= α+ ir0 and

s

r
⩽

3− α

2
+

r20
2(1− α)

,(5)

when α > 1, r0 ∈ R and z ∈ D.

Our principal result is the following theorem which gives an easy mechanism
to check whether a function f belongs to the class MR(α).
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Theorem 2.9. Let the function ψ be in the class MR(Ω). If the locally
univalent function f ∈ A such that, satisfies

ψ(QST (z), QCV (z); z) ∈ Ω (z ∈ D),(6)

then the function f is in the class MR(α).

Proof. Let the function p : D → C be defined by

p(z) :=
1

1− α

(
f(z)

zf ′(z)
− α

)
.

Then p is analytic in D and f ∈ MR(α) is equivalent to p ∈ P. From equations
(7) and (8), we have

QST (z) :=
zf ′(z)

f(z)
=

1

(1− α)p(z) + α
.(7)

A computation shows that

QCV (z) := 1 +
zf ′′(z)

f ′(z)
=

1− (1− α)zp′(z)

(1− α)p(z) + α
.(8)

Define the transformation from C2 to C2 by

r =
1

(1− α)u+ α
and s =

1− (1− α)v

(1− α)u+ α
.

Let

φ(u, v; z) = ψ(r, s; z) = ψ

(
1

(1− α)u+ α
,
1− (1− α)v

(1− α)u+ α
; z

)
.

Thus, using (7) and (8) we get

φ(p(z), zp′(z); z) = ψ(QST (z), QCV (z); z).

By (6), we see that φ(p(z), zp′(z); z) ∈ Ω. Note that

φ(iρ, σ; z) = ψ

(
1

(1− α)iρ+ α
,
1− (1− α)σ

(1− α)iρ+ α
; z

)
= ψ(r, s; z).

Hence, we have

1

r
= α+ (1− α)iρ = α+ ir0,

which gives ρ = r0/(1−α) ∈ R. Further, we have s/r = 1− (1−α)σ, so using
equation (5), we see that ρ ≤ −(1 + ρ2)/2. Hence, we get the corresponding
admissibility conditions given in (5). Thus, by Theorem 2.6, it follows that
φ ∈ P1(Ω). Therefore, we obtain Re(p(z)) > 0 or equivalently, f is in the class
MR(α).
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3. Sufficient Conditions

In this section, we apply Theorem 2.9 to obtain several sufficient condi-
tion for function to be starlike of reciprocal order. These results in terms of
combinations of QST and QCV .

Theorem 3.1. For α > 1, let Ω = C − (−∞, (3− α)/2]. If the locally
univalent function f ∈ A satisfies QCV (z)/QST (z) ∈ Ω for all z ∈ D, then the
function f belongs to the class MR(α).

Proof. Let the function ψ : C2 → C be defined by ψ(r, s) = s/r and Ω =
C− (−∞, (3− α)/2]. Then, the function ψ satisfies

ψ(r, s) =
s

r
⩽

3− α

2
+

r20
2(1− α)

,

whenever r0 ∈ R. The function g : [0,∞) → R defined by

g(t) =
3− α

2
+

t

2(1− α)

is a decreasing function of t and hence its maxima is attainted at t = 0. Hence,
we have g(t) ⩽ g(0) = (3− α)/2 and so

ψ(r, s) =
s

r
⩽

3− α

2
.

Thus, it follows that ψ(r, s) /∈ Ω, for all r, s satisfying (5) and therefore ψ ∈
MR(Ω). Since ψ(QST , QCV ) ∈ Ω, the result now follows from the Theorem
2.9.

Corollary 3.2. Let α > 1. If the locally univalent function f ∈ A satisfies
the inequality Re(QCV /QST ) > (3 − α)/2 for all z ∈ D, then the function f
belongs to the class MR(α).

Theorem 3.3. For α > 1, let Ω = C − [2/(3− α),∞). If the locally
univalent function f ∈ A satisfies QST (z)/QCV (z) ∈ Ω, for all z ∈ D, then the
function f belongs to the class MR(α).

Proof. Let the function ψ : C2 → C be defined by ψ(r, s) = r/s and Ω =
C− [2/(3− α) ,∞). Then, the function ψ satisfies

ψ(r, s) =
r

s
⩾

1

(3− α)/2 + r20/2(1− α)

=
2(1− α)

3(1− α)− α(1− α) + r20

=
2(1− α)

(α− 1)(α− 3) + r20
,
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whenever r0 ∈ R. The function g : R → R defined by

g(r0) =
2(1− α)

(α− 1)(α− 3)
+ r20

has minima at r0 = 0. Hence, we have

ψ(r, s) =
r

s
⩾

2(1− α)

(α− 1)(α− 3)
=

2

3− α
.

Thus, it follows that ψ(r, s) /∈ Ω, for all r, s satisfying (5) and so ψ ∈ MR(Ω).
Since, ψ(QST , QCV ) ∈ Ω, the result now follows by an application of Theorem
2.9.

Corollary 3.4. Let α > 1. If the locally univalent function f ∈ A satisfies
the inequality Re(QST /QCV ) < 2/(3 − α) for all z ∈ D, then the function f
belongs to the class MR(α).

Theorem 3.5. Let 1 < α < 2 and γ > 1/(2 − α). If the locally univalent
function f ∈ A satisfies the inequality

Re

(
QCV (z)

QST (z)

(
1 +

γ

QST (z)

))
>

(3− α)(1 + γα)

2

for all z ∈ D, then the function f belongs to the class MR(α).

Proof. Let the function ψ : C2 → C be defined by ψ(r, s) = s/r(1 + (γ/r)).
Then, for r, s satisfying (5), we have Re(ψ(r, s)) = s/r+αγs/r. Let Ω = {w ∈
C : Rew > ((3−α)(1+αγ)/2)}. For 1 < α < 2 and γ > 1/(2−α) the function
ψ satisfies

Reψ(r, s) =
s

r
+
αγs

r

⩽

(
3− α

2
+

r20
2(1− α)

)
+ αγ

(
3− α

2
+

r20
2(1− α)

)
= (1 + αγ)

(
3− α

2
+

r20
2(1− α)

)
,

whenever r0 ∈ R. Let the function g : R → R be defined by g(r0) = (1 +
αγ)((3− α)/2) + (r20/2(1− α)). By second derivative test we get that maxima
will occur at r0 = 0. Hence

Reψ(r, s) ⩽ (1 + αγ)

(
3− α

2

)
.

Thus, it follows that ψ(r, s) /∈ Ω, for all r, s satisfying (5), and so ψ ∈ MR(Ω).
Since ψ(QST , QCV ) ∈ Ω, the result now follows by an application of Theorem
2.9.
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Theorem 3.6. Let α > 1 and 2(1 − α) < γ < 0. If the locally univalent
function f ∈ A satisfies the inequality

Re

(
γQCV (z)

QST (z)
+

1

Q2
ST (z)

)
< γ

(
3− α

2

)
+ α2

for all z ∈ D, then the function f belongs to the class MR(α).

Proof. Let the function ψ : C2 → C be defined by ψ(r, s) = γs/r + 1/r2.
Then for r, s satisfying (5), we have Reψ(r, s) = γs/r + (α2 − r20). Let Ω =
{w ∈ C : Rew < γ(3− α)/2 + α2}. Then, the function ψ satisfies

Reψ(r, s) =
γs

r
+Re

(
1

r2

)
⩾ γ

(
3− α

2
+

r20
2(1− α)

)
+ (α2 − r20)

= γ

(
3− α

2

)
+ α2 +

(
γ

2(1− α)
− 1

)
r20,

whenever r0 ∈ R. Let the function g : [0,∞) → R be defined by g(t) =
γ((3−α)/2)+α2 +(γ/2(1−α)− 1)t. The function g is an increasing function
of t if γ > 2(1−α). So minimum value of g will occur at t = 0, Hence, we have
g(t) ⩾ g(0) = γ(3− α)/2 + α2 and so

Reψ(r, s) ⩾ γ

(
3− α

2

)
+ α2.

Thus, it follows that for all r, s satisfying (5), ψ(r, s) /∈ Ω, and therefore ψ ∈
MR(Ω). Since ψ(QST , QCV ) ∈ Ω, the result now follows by an application of
Theorem 2.9.

Theorem 3.7. Let α > 2. If the locally univalent function f ∈ A satisfies
either

Re

(
γQCV (z)

Q2
ST (z)

+
1

QST (z)

)
> α+ γα

(
3− α

2

)
γ >

2

α− 2

or

Re

(
γQCV (z)

Q2
ST (z)

+
1

QST (z)

)
< α+ γα

(
3− α

2

)
γ < 0,

for all z ∈ D, then the function f belongs to the class MR(α).

Proof. Let the function ψ : C2 → C be defined by ψ(r, s) = γs/r2 + 1/r.
Then for r, s satisfying (5), we have Reψ(r, s) = γαs/r + α.
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Case-1: For γ > 2/(α− 2). Let Ω = {w ∈ C : Rew > α+ (γα(3− α))/2}.
The function ψ satisfies

Reψ(r, s) = αγ
(s
r

)
+ α

⩽ αγ

(
3− α

2
+

r20
2(1− α)

)
+ α

= α+
αγ(3− α)

2
+

αγr20
2(1− α)

,

whenever r0 ∈ R. Let the function g : [0,∞) → R be defined by

g(t) = α+
αγ(3− α)

2
+

αγt

2(1− α)
.

The function g is a decreasing function of t, as g′(t) < 0, so we see that maxima
is at t = 0. Hence, we have g(t) ⩽ g(0) = α+ αγ((3− α)/2) and so

Reψ(r, s) ⩽ α+ αγ

(
3− α

2

)
.

Thus, it follows that ψ(r, s) /∈ Ω, for all r, s satisfying (5) and therefore ψ ∈
MR(Ω). Since, ψ(QST , QCV ) ∈ Ω, the result now follows from the Theorem
2.9.

Case-2: For γ < 0. Let Ω = {w ∈ C : Rew < α + (γα(3 − α))/2}. The
function ψ satisfies

Reψ(r, s) = αγ
(s
r

)
+ α

⩾ αγ

(
3− α

2
+

r20
2(1− α)

)
+ α

= α+
αγ(3− α)

2
+

αγr20
2(1− α)

,

whenever r0 ∈ R. Let the function g : [0,∞) → R be defined by

g(t) = α+
αγ(3− α)

2
+

αγt

2(1− α)
.

The function g is an increasing function of t, so we get that minima will occur
at t = 0. Hence, we have g(t) ⩾ g(0) = α+ αγ((3− α)/2) and so

Reψ(r, s) ⩾ α+ αγ

(
3− α

2

)
.

Thus, it follows that ψ(r, s) /∈ Ω, for all r, s satisfying (5) and so ψ ∈ MR(Ω).
Since ψ(QST , QCV ) ∈ Ω, the result now follows by an application of Theorem
2.9.
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Theorem 3.8. Let 1 < α < 3. If the locally univalent function f ∈ A
satisfies, either

Re

(
γQST (z)

QCV (z)
+

1

QST (z)

)
< α+

2γ

3− α
, γ > 0

or

Re

(
γQST (z)

QCV (z)
+

1

QST (z)

)
> α+

2γ

3− α
, γ < α− 3,

for all z ∈ D, then the function f belongs to the class MR(α).

Proof. Let the function ψ : C2 → C be defined by ψ(r, s) = γ(r/s) + 1/r.
Then for r, s satisfying (5), we have Reψ(r, s) = γ(r/s) + α.

Case-1: For γ > 0. Let Ω = {w ∈ C : Rew < α + (2γ/(3 − α))}. The
function ψ satisfies

Reψ(r, s) = γ
(r
s

)
+ α

⩾
γ

(3− α)/2 + r20/2(1− α)
+ α

=
2γ(1− α)

(3− α)(1− α) + r20
+ α,

whenever r0 ∈ R. Let the function g : R → R be defined by g(r0) = (2γ(1 −
α))/((3 − α)(1 − α) + r20) + α. By second derivative test we get that minima
will occur at r0 = 0. Hence,

Reψ(r, s) ⩾
2γ(1− α)

(3− α)(1− α)
+ α =

2γ

3− α
+ α.

Thus, it follows that ψ(r, s) /∈ Ω for all r, s satisfying (5) and so ψ ∈ MR(Ω).
Since, ψ(QST , QCV ) ∈ Ω, the result now follows from the Theorem 2.9.

Case-2: For γ < α− 3. Let Ω = {w ∈ C : Rew > α+ (2γ/(3− α))}. The
function ψ satisfies

Reψ(r, s) = γ
(r
s

)
+ α

⩽
γ

(3− α)/2 + r20/2(1− α)
+ α

=
2γ(1− α)

(3− α)(1− α) + r20
+ α,

whenever r0 ∈ R. Let the function g : R → R be defined by g(r0) = (2γ(1 −
α))/((3 − α)(1 − α) + r20) + α. By second derivative test we get that maxima
will occur at r0 = 0. Hence,

Reψ(r, s) ⩽
2γ(1− α)

(3− α)(1− α)
+ α =

2γ

3− α
+ α.

Thus, it follows that ψ(r, s) /∈ Ω, for all r, s satisfying (5) and therefore ψ ∈
MR(Ω). Since, ψ(QST , QCV ) ∈ Ω, the result now follows by an application of
Theorem 2.9.
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Theorem 3.9. Let α > 1. If the locally univalent function f ∈ A satisfies
either

Re

(
1

QST (z)
+
γQCV (z)

QST (z)

)
> α+ γ

(
3− α

2

)
, γ > 2

or

Re

(
1

QST (z)
+
γQCV (z)

QST (z)

)
< α+ γ

(
3− α

2

)
, γ < 0,

for all z ∈ D, then the function f belongs to the class MR(α).

Proof. Let the function ψ : C2 → C be defined by ψ(r, s) = 1/r + γs/r.
Then for r, s satisfying (5), we have Reψ(r, s) = α+ γs/r.

Case-1: For γ > 2. Let Ω = {w ∈ C : Rew > α + γ((3 − α)/2)}. The
function ψ satisfies

Reψ(r, s) = α+ γ
(s
r

)
⩽ α+ γ

(
3− α

2
+

r20
2(1− α)

)
,

whenever r0 ∈ R. Let the function g : [0,∞) → R be defined by g(t) =
α + γ(((3 − α)/2) + t/(2(1 − α))). The function g is a decreasing function of
t as g′(t) < 0, so we obtain that maxima will occur at t = 0. Hence, we have
g(t) ≤ g(0) = α+ γ((3− α)/2) and so

Reψ(r, s) ⩽ α+ γ

(
3− α

2

)
.

Thus, it follows that ψ(r, s) /∈ Ω, for all r, s satisfying (5) and so ψ ∈ MR(Ω).
Since, ψ(QST , QCV ) ∈ Ω, the result now follows from the Theorem 2.9.

Case-2: For γ < 0. Let Ω = {w ∈ C : Rew < α + γ((3 − α)/2)}. The
function ψ satisfies

Reψ(r, s) = α+ γ
(s
r

)
⩾ α+ γ

(
3− α

2
+

r20
2(1− α)

)
,

whenever r0 ∈ R. Let the function g : [0,∞) → R be defined by g(t) =
α + γ((3 − α)/2) + t/2(1 − α)). The function g is an increasing function of t
as g′(t) > 0, so we obtain that minima will occur at t = 0. Hence, we have
g(t) ⩾ g(0) = α+ γ((3− α)/2) and so

Reψ(r, s) ⩾ α+ γ

(
3− α

2

)
.

Thus, it follows that ψ(r, s) /∈ Ω, for all r, s satisfying (5) and so ψ ∈ MR(Ω).
Since, ψ(QST , QCV ) ∈ Ω, the result now follows by an application of Theorem
2.9.

Theorem 3.10. Let 1 < α < 3 and 1/(α−3)(α+1) < γ < 0. If the locally
univalent function f ∈ A satisfies the inequality

Re

(
γ

Q2
ST (z)

+
QST (z)

QCV (z)

)
< γα2 +

2

3− α

for all z ∈ D, then the function f belongs to the class MR(α).
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Proof. Let the function ψ : C2 → C be defined by ψ(r, s) = γ/r2+r/s. Then
for r, s satisfying (5), we have Reψ(r, s) = γ(α2 − r20) + r/s. Let Ω = {w ∈ C :
Rew < γα2 + 2/(3− α)}. Then for 1 < α < 3 and 1/(α − 3)(α + 1) < γ < 0,
the function ψ satisfies

Reψ(r, s) = γ(α2 − r20) +
r

s
⩾ γ(α2 − r20) +

2(1− α)

(3− α)(1− α) + r20
,

whenever r0 ∈ R. Let the function g : R → R be defined by

g(r0) = γ(α2 − r20) + 2(1− α)/((3− α)(1− α) + r20).

By double derivative test we obtain that minima will occur at r0 = 0. Hence,
we have

Reψ(r, s) ⩾ γα2 +
2

3− α
.

Thus, it follows that ψ(r, s) /∈ Ω, for all r, s satisfying (5) and therefore ψ ∈
MR(Ω). Since, ψ(QST , QCV ) ∈ Ω, the result now follows by an application of
Theorem 2.9.

Theorem 3.11. Let α > 1 and γ > 0. If the locally univalent function
f ∈ A satisfies the inequality

Re

(
γ

QCV
+
QST

QCV

)
<

2(αγ + 1)

3− α

for all z ∈ D, then the function f belongs to the class MR(α).

Proof. Let the function ψ : C2 → C be defined by ψ(r, s) = γ/s + r/s =
((γ/r) + 1)r/s. Then for r, s satisfying (5), we have Reψ(r, s) = (αγ + 1)r/s.
Let Ω = {w ∈ C : Rew ⩽ 2(αγ + 1)/(3 − α)}. Then for α > 1 and γ > 0,
function ψ satisfies

Reψ(r, s) = (αγ + 1)
r

s
⩾

αγ + 1

(3− α)/2 + r20/2(1− α)
=

2(1− α)(1 + αγ)

(3− α)(1− α) + r20
,

whenever r0 ∈ R. Let the function g : R → R be defined by

g(r0) = 2(1− α)(1 + αγ)/((3− α)(1− α) + r20).

By double derivative test we get that minima will occur at r0 = 0. Hence

Reψ(r, s) ⩾
2(1 + αγ)

3− α
.

Thus, it follows that ψ(r, s) /∈ Ω, for all r, s satisfying (5) and so ψ ∈ MR(Ω).
Since, ψ(QST , QCV ) ∈ Ω, the result now follows from the Theorem 2.9.

Theorem 3.12. Let α > 1 and γ < 3/2α. If the locally univalent function
f ∈ A satisfies the inequality

Re

(
γ

QST
+QCV

)
> αγ +

3− α

2α

for all z ∈ D, then the function f belongs to the class MR(α).
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Proof. Let the function ψ : C2 → C be defined by ψ(r, s) = γ/r+s = γ/r+
sr/r. Then for r, s satisfying (5), we have Reψ(r, s) = αγ + s/r(α/(α2 + r20)).
Let Ω = {w ∈ C : ReΩ > αγ + (3 − α)/2α}. Then for α > 1 and γ < 3/2α,
function ψ satisfies

Reψ(r, s) = αγ +

(
α

α2 + r20

)
s

r
⩽ αγ +

(
α

α2 + r20

)(
3− α

2
+

r20
2(1− α)

)
,

whenever r0 ∈ R. Let the function g : R → R be defined by

g(r0) = αγ + (α/(α2 + r20))((3− α)/2 + r20/2(1− α)).

By double derivative test we obtain that maxima will exist at r0 = 0. Hence,
we get

Reψ(r, s) ⩽ αγ +
3− α

2α
.

Thus, it follows that ψ(r, s) /∈ Ω, for all r, s satisfying (5) and therefore ψ ∈
MR(Ω). Since, ψ(QST , QCV ) ∈ Ω, the result now follows by an application of
Theorem 2.9.

Theorem 3.13. Let α > 1 and γ > 0. If the locally univalent function
f ∈ A satisfies the inequality

Re(QST + γQCV ) >
2 + γ(3− α)

2α

for all z ∈ D, then the function f belongs to the class MR(α).

Proof. Let the function ψ : C2 → C be defined by

ψ(r, s) = r + γs = r(1 + γs/r).

Then for r, s satisfying (5), we have Reψ(r, s) = (α/(α2 + r20))(1 + γs/r). Let
Ω = {w ∈ C : Rew > 2+γ(3−α)/2α}. Then for α > 1 and γ > 0 the function
ψ satisfies

Reψ(r, s) =
α

α2 + r20

(
1 +

γs

r

)
⩽

α

α2 + r20

(
1 + γ

(
3− α

2
+

r20
2(1− α)

))
=

α

2(1− α)

(
2(1− α) + γ(3− α)(1− α) + γr20

α2 + r20

)
,

whenever r0 ∈ R. Let the function g : [0,∞) → R be defined by g(t) =
α(2(1 − α) + γ(3 − α)(1 − α) + γt)/2(1 − α)(α2 + t). The function g is a
decreasing function of t, so the maxima will occur at t = 0. Hence, we get that
g(t) ⩽ g(0) = (2 + γ(3− α))/2α and therefore

Reψ(r, s) ⩽
2 + γ(3− α)

2α
.
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Thus, it follows that ψ(r, s) /∈ Ω, for all r, s satisfying (5) and so ψ ∈ MR(Ω).
Since, ψ(QST , QCV ) ∈ Ω, the result now follows by an application of Theorem
2.9.

4. Further Sufficient Conditions

Let MR[α] be the class of all analytic functions satisfying the inequality
|zf ′(z)/f(z) − 1| < α − 1 or equivalently the subordination f(z)/(zf ′(z)) ≺
1+(α−1)z. In this section, we obtain some sufficient condition for the functions
to be in the class MR[α]. Since Re(1+ (α− 1)z) < α, it follows that MR[α] ⊂
MR(α) and therefore the sufficient conditions obtained here also sufficient for
functions to be starlike of reciprocal order α > 1.

Theorem 4.1. Let α > 1. If the locally univalent function f ∈ A satisfies
the inequality |(QCV /QST ) − 1| < α − 1 for all z ∈ D, then the function f is
in the class MR[α].

Proof. Let w : D → C be defined by

w(z) =
1

α− 1

(
f(z)

zf ′(z)
− 1

)
.(9)

Then, the function w is analytic in D and w(0) = 0. To prove that the function
f is in the class MR[α], it is enough to show that the function w satisfy the
hypothesis of Schwarz lemma, namely, |w(z)| < 1. From equation (9), we have

QST :=
zf ′(z)

f(z)
=

1

(α− 1)w(z) + 1
.(10)

A further calculation gives

QCV := 1 +
zf ′′(z)

f ′(z)
=

1− (α− 1)zw′(z)

(α− 1)w(z) + 1
.(11)

Using equations (10) and (11), we get

QCV

QST
− 1 = −(α− 1)zw′(z).

Let ψ(r, s) = (s/r)−1 and Ω = {w ∈ C : |w| < α−1}. The function ψ satisfies

|ψ(eiθ,Keiθ)| = | − (1− α)Keiθ| = (α− 1)K ⩾ α− 1,

whenever K ⩾ 1 and α > 1. Thus, ψ ∈ Bn(Ω). Hence, by Theorem 2.7, we
obtain the desired result.

Theorem 4.2. Let α > 1. If the locally univalent function f ∈ A satisfies
the inequality |QCV − 1| < 2(α − 1)/α for all z ∈ D, then the function f is in
the class MR[α].
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Proof. Let w : D → C be defined by (9). Let ψ(r, s) = s−1 and the domain
Ω = {w ∈ C : |w| < 2(α− 1)/α}. Then the function ψ satisfies∣∣ψ(eiθ,Keiθ)∣∣ = ∣∣∣∣1− (α− 1)Keiθ

(α− 1)eiθ + 1
− 1

∣∣∣∣
=

∣∣∣∣ (1− α)(Keiθ + eiθ)

(α− 1)eiθ + 1

∣∣∣∣
⩾

(α− 1)(K + 1)

α

=
2(α− 1)

α
,

whenever K ⩾ 1 and α > 1. Thus, ψ ∈ Bn(Ω). Hence, by Theorem 2.7, we
obtain the desired result.

Theorem 4.3. Let α > 1. If the locally univalent function f ∈ A satisfies
the inequality |QST − 1| < (α − 1)/α for all z ∈ D, then the function f is in
the class MR[α].

Proof. Let w : D → C be defined by (9). Let ψ(r, s) = r−1 and the domain
Ω = {w ∈ C : |w| < (α− 1)/α}. From the equation (10), we have

QST − 1 =
1

(α− 1)w(z) + 1
− 1 =

(1− α)w(z)

(α− 1)w(z) + 1
.

The function ψ satisfies

ψ(eiθ,Keiθ) =
(1− α)eiθ

(α− 1)eiθ + 1
⩾
α− 1

α
.

whenever K ⩾ 1 and α > 1. Thus, ψ ∈ Bn(Ω). Hence, by Theorem 2.7, we
obtain the desired result.
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