• Title/Summary/Keyword: Spatial Unit

Search Result 872, Processing Time 0.026 seconds

Seismic Vulnerability Assessment and Mapping for 9.12 Gyeongju Earthquake Based on Machine Learning (기계학습을 이용한 지진 취약성 평가 및 매핑: 9.12 경주지진을 대상으로)

  • Han, Jihye;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1367-1377
    • /
    • 2020
  • The purpose of this study is to assess the seismic vulnerability of buildings in Gyeongju city starting with the earthquake that occurred in the city on September 12, 2016, and produce a seismic vulnerability map. 11 influence factors related to geotechnical, physical, and structural indicators were selected to assess the seismic vulnerability, and these were applied as independent variables. For a dependent variable, location data of the buildings that were actually damaged in the 9.12 Gyeongju Earthquake was used. The assessment model was constructed based on random forest (RF) as a mechanic study method and support vector machine (SVM), and the training and test dataset were randomly selected with a ratio of 70:30. For accuracy verification, the receiver operating characteristic (ROC) curve was used to select an optimum model, and the accuracy of each model appeared to be 1.000 for RF and 0.998 for SVM, respectively. In addition, the prediction accuracy was shown as 0.947 and 0.926 for RF and SVM, respectively. The prediction values of the entire buildings in Gyeongju were derived on the basis of the RF model, and these were graded and used to produce the seismic vulnerability map. As a result of reviewing the distribution of building classes as an administrative unit, Hwangnam, Wolseong, Seondo, and Naenam turned out to be highly vulnerable regions, and Yangbuk, Gangdong, Yangnam, and Gampo turned out to be relatively safer regions.

A Study on the educational environment according to the teaching and learning method for the realization of the future school - Focused on the consumer needs analysis of K middle school & S middle school - (미래 교수학습방법에 따른 교과교실 교육 환경을 위한 기초 연구 - K중학교 & S중학교 수요자 요구 분석을 중심으로 -)

  • Lee, Jae-Lim
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.21 no.2
    • /
    • pp.11-24
    • /
    • 2022
  • The purpose of this study is to derive a curriculum environment for operating various student-centered teaching and learning methods, and the following results were derived: First, most of the lectures, discussions and consultations, data search, report preparation, presentation, work exhibition, and others were commonly derived, regardless of the types of long-term and short-term project classes for each subject. In particular, the necessity of operating various classes at the same time was suggested, indicating the need for an integrated teaching and learning operation environment in the unit subject class. Second, considering that practical classes are linked concurrently to lectures and discussion classes to conduct one subject class, it is necessary to switch to a specialized curriculum system that allows various classes such as lectures to be carried out at the same time. Third, as a result of grasping the appropriateness of the space size of the subject class for realizing different class types in the future, it can be seen that the space size of the practice room, including the space for practice and the area for exhibition, should be expanded. Based on the research results, the spatial environment for the operation of future teaching and learning classes is based on the public curriculum classroom system, and whether professional curriculum classes, such as lecture rooms and discussion and presentation rooms, are secured according to the number of students.

Major Factors Influencing Landslide Occurrence along a Forest Road Determined Using Structural Equation Model Analysis and Logistic Regression Analysis (구조방정식과 로지스틱 회귀분석을 이용한 임도비탈면 산사태의 주요 영향인자 선정)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.585-596
    • /
    • 2022
  • This study determined major factors influencing landslide occurrence along a forest road near Sangsan village, Sancheok-myeon, Chungju-si, Chungcheongbuk-do, South Korea. Within a 2 km radius of the study area, landslides occur intensively during periods of heavy rainfall (August 2020). This makes study of the area advantageous, as it allows examination of the influence of only geological and tomographic factors while excluding the effects of rainfall and vegetation. Data for 82 locations (37 experiencing landslides and 45 not) were obtained from geological surveys, laboratory tests, and geo-spatial analysis. After some data preprocessing (e.g., error filtering, minimum-maximum normalization, and multicollinearity), structural equation model (SEM) and logistic regression (LR) analyses were conducted. These showed the regolith thickness, porosity, and saturated unit weight to be the factors most influential of landslide risk in the study area. The sums of the influence magnitudes of these factors are 71% in SEM and 83% in LR.

Classification and Spatial Distribution of Forest Vegetation Types in Yokjido Island, Korea (욕지도(경남) 산림식생 유형구분과 공간분포 특성)

  • Lee, Bora;Lee, Ho-Sang;Kim, Jun-Soo;Cho, Joon-Hee;Oh, Seung-Hwan;Cho, Hyun-Je
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.345-356
    • /
    • 2022
  • Yokjido is a 15-km2 inhabited island located at the tip of the southeastern coast of the Korean Peninsula. Its forest is mostly composed of substitutional vegetation. Our aim was to provide basic information necessary for the conservation and management of the forest vegetation in Yokjido. We classified the types of existing vegetation using methods of the Zurich-Montpellier school of phytosociology. The resulting vegetation map shows the dominant tree species in the top canopy-layer. A total of 8 vegetation types were identified, which were arranged into a vegetation unit hierarchy of 2 communities, 4 sub-communities, 6 variants, and 2 subvariants. Evaluations of each type showed large and small differences in floristic composition, which reflect anthropogenic influences, site conditions, succession stages, and the establishment period. Moreover, vegetation types differed significantly in terms of species diversity indices; in particular, overall species richness, species diversity, and species evenness tended to increase significantly as the elevation increased. The herbaceous plant species showed the highest positive (+) correlation to x. These results were consistent with those of McCain, who reported that species diversity increases in mountainous areas with relatively low elevations due to the mid-domain effect. The forest succession in Yokjido will potentially enter a mixed-forest stage and then proceed to become an all-evergreen broad-leaved forest.

Availability of the metapopulation theory in research of biological invasion: Focusing on the invasion success (침입생물 연구에 대한 메타개체군 이론의 활용 가능성: 침입 성공을 중심으로)

  • Jaejun Song;Jinsol Hong;Kijong Cho
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.525-549
    • /
    • 2022
  • The process of biological invasion is led by the dynamics of a population as a demographic and evolutionary unit. Spatial structure can affect the population dynamics, and it is worth being considered in research on biological invasion which is always accompanied by dispersal. Metapopulation theory is a representative approach to spatially structured populations, which is chiefly applied in the field of ecology and evolutionary biology despite the controversy about its definition. In this study, metapopulation was considered as a spatially structured population that includes at least one subpopulation with significant extinction probability. The early phase of the invasion is suitable to be analyzed in aspects of the metapopulation concept because the introduced population usually has a high extinction probability, and their ecological·genetic traits determining the invasiveness can be affected by the metapopulation structure. Although it is important in the explanation of the prediction of the invasion probability, the metapopulation concept is rarely used in ecological research about biological invasion in Korea. It is expected that applying the metapopulation theory can supply a more detailed investigation of the invasion process at the population level, which is relatively inadequate in Korea. In this study, a framework dividing the invasive metapopulation into long- and middle-distance scales by the relative distance of movement to the natural dispersal range of species is proposed to easily analyze the effect of a metapopulation in real cases. Increased understanding of the mechanisms underlying invasions and improved prediction of future invasion risk are expected with the metapopulation concept and this framework.

Dose Verification Using Pelvic Phantom in High Dose Rate (HDR) Brachytherapy (자궁경부암용 팬톰을 이용한 HDR (High dose rate) 근접치료의 선량 평가)

  • 장지나;허순녕;김회남;윤세철;최보영;이형구;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.15-19
    • /
    • 2003
  • High dose rate (HDR) brachytherapy for treating a cervix carcinoma has become popular, because it eliminates many of the problems associated with conventional brachytherapy. In order to improve the clinical effectiveness with HDR brachytherapy, a dose calculation algorithm, optimization procedures, and image registrations need to be verified by comparing the dose distributions from a planning computer and those from a phantom. In this study, the phantom was fabricated in order to verify the absolute doses and the relative dose distributions. The measured doses from the phantom were then compared with the treatment planning system for the dose verification. The phantom needs to be designed such that the dose distributions can be quantitatively evaluated by utilizing the dosimeters with a high spatial resolution. Therefore, the small size of the thermoluminescent dosimeter (TLD) chips with a dimension of <1/8"and film dosimetry with a spatial resolution of <1mm used to measure the radiation dosages in the phantom. The phantom called a pelvic phantom was made from water and the tissue-equivalent acrylic plates. In order to firmly hold the HDR applicators in the water phantom, the applicators were inserted into the grooves of the applicator holder. The dose distributions around the applicators, such as Point A and B, were measured by placing a series of TLD chips (TLD-to-TLD distance: 5mm) in the three TLD holders, and placing three verification films in the orthogonal planes. This study used a Nucletron Plato treatment planning system and a Microselectron Ir-192 source unit. The results showed good agreement between the treatment plan and measurement. The comparisons of the absolute dose showed agreement within $\pm$4.0 % of the dose at point A and B, and the bladder and rectum point. In addition, the relative dose distributions by film dosimetry and those calculated by the planning computer show good agreement. This pelvic phantom could be a useful to verify the dose calculation algorithm and the accuracy of the image localization algorithm in the high dose rate (HDR) planning computer. The dose verification with film dosimetry and TLD as quality assurance (QA) tools are currently being undertaken in the Catholic University, Seoul, Korea.

  • PDF

Environmentally Associated Spatial Distribution of a Macrozoobenthic Community in the Continental Shelf off the Southern Area of the East Sea, Korea (한국 동해 남부해역 대륙붕에 서식하는 대형저서동물군집 공간분포를 결정하는 환경요인)

  • Lee, Jung-Ho;Lee, Jung-Suk;Park, Young-Gyu;Kang, Seong-Gil;Choi, Tae Seob;Gim, Byeong-Mo;Ryu, Jongseong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.1
    • /
    • pp.66-75
    • /
    • 2014
  • This study aims to understand environmental factors that determine spatial distribution of macrozoobenthic community in the southern area (ca 100-500 m depth) of East Sea, Korea, known as a candidate site for carbon storage under the seabed. From sixteen locations sampled in the summer of 2012, a total of 158 species were identified, showing density of $843indiv/m^2$ and biomass of $26.2g\;WW/m^2$, with increasing faunal density towards biologically higher diverse locations. Principal component analysis showed that a total of 33 environmental parameters were reduced to three principal components (PC), indicating sediment, bottom water, and depth, respectively. As sand content was increasing, number of species increased but biomass decreased. Six dominant species including two bivalve species favored high concentrations of ${\Omega}$ aragonite and ${\Omega}$ calcite, indicating that the corresponding species can be severely damaged by ocean acidification or $CO_2$ effluent. Cluaster analysis based on more than 1% density dominant species classified the entire study area into four faunal assemblage (location groups), which were delineated by characteristic species, including (A) Ampelisca miharaensis, (B) Edwardsioides japonica, (C) Maldane cristata, (D) Spiophanes kroeyeri, and clearly separated in terms of geography, bottom water and sediment environment. Overall, a discriminant function model was developed to predict four faunal assemblages from five simply-measured environmental variables (depth, sand content in sediment, temperature, salinity and pH in bottom water) with 100% accuracy, implying that benthic faunal assemablages are closed linked to certain combinations of abiotic factors.

Analysis of Landscape According to Land Use at Rural Area in Korea Using GIS Application (GIS기법을 이용한 농촌지역의 토지이용에 따른 경관유형 분석)

  • Hong, Seung-Gil;Seo, Myung-Chul;Jung, Pil-Kyun;Sonn, Yeon-Kyu;Park, Kwang-Lai;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • To designate rural landscape spatially, land use and topographic features for 383 of "Ri"s or "Dong", which is a basic administrative unit in Korea, were analyzed using GIS application. We have categorized rural landscape into three types such as agricultural, natural and urban landscape by land use. On the basis of spatial landscape pattern, rural area could be classified into 6 groups of Mountainous area (MA), Mountainous village area (MV), Developing mountainous village area (DM), Plain agricultural area (PA), Developing plain village area (DP) and Urbanized area (UA) according to the ratios of land for agricultural and urban use as the criteria. In MA, the ratio of upland area including orchard was slightly larger than that of paddy, while that of paddy was about 1.5 times larger than upland in other groups. Forested area was distributed more than two-thirds among natural landscape area in MA, MV and DM. In plain types (PA and DP), the ratio of irrigated paddy was extremely larger than partially irrigated paddy and the ratio of water body area among the natural landscape area was two times as large as that of forested area. The ratio of land for industrial and livestock facilities among urban landscape area were 20% or more in MV, DM and DP, and it means that these facilities are mainly distributed in the developing ru ral area where residents and industry are closely related each other. According to the relative ratio of sloped land of 6 categorized areas, the MA area have lots of land with E and F slopes and MV and DM have all grades of sloped land evenly distributed in relative to other types of rural landscape. It has been showed that PA, DP and UA occupied more than two-thirds of land with A or B slope. In case of the analysis of topological distribution in 6 types of rural landscape, there were overwhelmingly lager highland areas in MA. Conclusively, we have confirmed that 6 types of rural landscape classified by land use pattern in 3 categorized areas such as agricultural, natural and urban landscape area would be useful for the management of rural area. For development of sustainable agriculture and the preservation of rural amenity, proper management ways should be properly applied according to rural landscape patterns.

Rice Yield Estimation Using Sentinel-2 Satellite Imagery, Rainfall and Soil Data (Sentinel-2 위성영상과 강우 및 토양자료를 활용한 벼 수량 추정)

  • KIM, Kyoung-Seop;CHOUNG, Yun-Jae;JUN, Byong-Woon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.133-149
    • /
    • 2022
  • Existing domestic studies on estimating rice yield were mainly implemented at the level of cities and counties in the entire nation using MODIS satellite images with low spatial resolution. Unlike previous studies, this study tried to estimate rice yield at the level of eup-myon-dong in Gimje-si, Jeollabuk-do using Sentinel-2 satellite images with medium spatial resolution, rainfall and soil data, and then to evaluate its accuracy. Five vegetation indices such as NDVI, LAI, EVI2, MCARI1 and MCARI2 derived from Sentinel-2 images of August 1, 2018 for Gimje-si, Jeollabuk-do, rainfall and paddy soil-type data were aggregated by the level of eup-myon-dong and then rice yield was estimated with gamma generalized linear model, an expanded variant of multi-variate regression analysis to solve the non-normality problem of dependent variable. In the rice yield model finally developed, EVI2, rainfall days in September, and saline soils ratio were used as significant independent variables. The coefficient of determination representing the model fit was 0.68 and the RMSE for showing the model accuracy was 62.29kg/10a. This model estimated the total rice production in Gimje-si in 2018 to be 96,914.6M/T, which was very close to 94,470.3M/T the actual amount specified in the Statistical Yearbook with an error of 0.46%. Also, the rice production per unit area of Gimje-si was amounted to 552kg/10a, which was almost consistent with 550kg/10a of the statistical data. This result is similar to that of the previous studies and it demonstrated that the rice yield can be estimated using Sentinel-2 satellite images at the level of cities and counties or smaller districts in Korea.

Evaluation for applicability of river depth measurement method depending on vegetation effect using drone-based spatial-temporal hyperspectral image (드론기반 시공간 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 검토)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • Due to the revision of the River Act and the enactment of the Act on the Investigation, Planning, and Management of Water Resources, a regular bed change survey has become mandatory and a system is being prepared such that local governments can manage water resources in a planned manner. Since the topography of a bed cannot be measured directly, it is indirectly measured via contact-type depth measurements such as level survey or using an echo sounder, which features a low spatial resolution and does not allow continuous surveying owing to constraints in data acquisition. Therefore, a depth measurement method using remote sensing-LiDAR or hyperspectral imaging-has recently been developed, which allows a wider area survey than the contact-type method as it acquires hyperspectral images from a lightweight hyperspectral sensor mounted on a frequently operating drone and by applying the optimal bandwidth ratio search algorithm to estimate the depth. In the existing hyperspectral remote sensing technique, specific physical quantities are analyzed after matching the hyperspectral image acquired by the drone's path to the image of a surface unit. Previous studies focus primarily on the application of this technology to measure the bathymetry of sandy rivers, whereas bed materials are rarely evaluated. In this study, the existing hyperspectral image-based water depth estimation technique is applied to rivers with vegetation, whereas spatio-temporal hyperspectral imaging and cross-sectional hyperspectral imaging are performed for two cases in the same area before and after vegetation is removed. The result shows that the water depth estimation in the absence of vegetation is more accurate, and in the presence of vegetation, the water depth is estimated by recognizing the height of vegetation as the bottom. In addition, highly accurate water depth estimation is achieved not only in conventional cross-sectional hyperspectral imaging, but also in spatio-temporal hyperspectral imaging. As such, the possibility of monitoring bed fluctuations (water depth fluctuation) using spatio-temporal hyperspectral imaging is confirmed.