DOI QR코드

DOI QR Code

침입생물 연구에 대한 메타개체군 이론의 활용 가능성: 침입 성공을 중심으로

Availability of the metapopulation theory in research of biological invasion: Focusing on the invasion success

  • 송재준 (고려대학교 환경생태공학과) ;
  • 홍진솔 (고려대학교 오정리질리언스연구원) ;
  • 조기종 (고려대학교 환경생태공학과)
  • Jaejun Song (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Jinsol Hong (Ojeong Resilience Institute, Korea University) ;
  • Kijong Cho (Department of Environmental Science and Ecological Engineering, Korea University)
  • 투고 : 2022.09.15
  • 심사 : 2022.12.14
  • 발행 : 2022.12.31

초록

개체군은 진화적 단위이자 개체군 통계적 단위로서, 생물학적 침입의 과정은 개체군의 생태적, 진화적 동태에 기인한다. 개체군의 공간구조는 개체군 동태에 영향을 줄 수 있으며, 분산이 반드시 동반되는 생물학적 침입에 대한 연구에서는 공간구조를 고려할 필요가 있다. 메타개체군 이론은 공간구조를 가진 개체군에 대한 대표적인 접근으로, 주로 생태학 및 진화생물학 연구에 활용되고 있다. 메타개체군은 공간적 구조를 가진 개체군의 동의어로 여겨지기도 하지만, 용어의 모호한 사용을 피하기 위해서는 절멸 가능성이 고려되는 경우에 한해 정의되어야 한다는 비판이 있다. 침입 초기 단계의 개체군은 높은 절멸 가능성을 가지는 경우가 많으므로, 메타개체군 이론을 적용하기에 용이하다. 한편, 침입 초기 개체군의 생태적·유전적 특성은 분산의 영향을 크게 받기 때문에, 메타개체군 이론은 개체군 수준에서 침입성의 변화와 침입 가능성을 설명하는 강력한 도구가 될 수 있을 것으로 생각된다. 그러나, 한국에서 침입생물에 대한 생태학적 연구는 주로 종 수준의 분포 변화에 대해 이루어지고 있고, 메타개체군 개념을 적용한 경우가 드문 실정이다. 메타개체군 이론을 활용한다면, 국내 연구가 상대적으로 미진했던 개체군 단위의 침입 기작을 보다 상세히 규명할 수 있을 것으로 생각된다. 본 연구에서는 실제 침입생물에 미치는 메타개체군의 영향을 쉽게 파악하기 위해 침입생물 메타개체군이 자연적인 분산 거리를 넘어서 연결되는지 여부에 따라 장거리와 중거리 두 가지 규모로 나누는 체계를 활용할 것을 제안하였다. 메타개체군 개념에 입각한 침입생물 연구가 침입의 기작을 이해하고 장래의 침입 리스크를 예측·관리하는 데에 도움을 줄 것으로 기대한다.

The process of biological invasion is led by the dynamics of a population as a demographic and evolutionary unit. Spatial structure can affect the population dynamics, and it is worth being considered in research on biological invasion which is always accompanied by dispersal. Metapopulation theory is a representative approach to spatially structured populations, which is chiefly applied in the field of ecology and evolutionary biology despite the controversy about its definition. In this study, metapopulation was considered as a spatially structured population that includes at least one subpopulation with significant extinction probability. The early phase of the invasion is suitable to be analyzed in aspects of the metapopulation concept because the introduced population usually has a high extinction probability, and their ecological·genetic traits determining the invasiveness can be affected by the metapopulation structure. Although it is important in the explanation of the prediction of the invasion probability, the metapopulation concept is rarely used in ecological research about biological invasion in Korea. It is expected that applying the metapopulation theory can supply a more detailed investigation of the invasion process at the population level, which is relatively inadequate in Korea. In this study, a framework dividing the invasive metapopulation into long- and middle-distance scales by the relative distance of movement to the natural dispersal range of species is proposed to easily analyze the effect of a metapopulation in real cases. Increased understanding of the mechanisms underlying invasions and improved prediction of future invasion risk are expected with the metapopulation concept and this framework.

키워드

과제정보

본 성과는 환경부의 재원을 지원받아 한국환경산업기술원 "신기후체제 대응 환경기술개발사업(RE202201934)"의 연구개발을 통해 창출되었습니다.

참고문헌

  1. Adke SR and JE Moyal. 1963. A birth, death, and diffusion process. J. Math. Anal. Appl. 7:209-224. https://doi.org/10.1016/0022-247X(63)90048-9
  2. Baguette M. 2004. The classical metapopulation theory and the real, natural world: a critical appraisal. Basic Appl. Ecol. 5:213-224. https://doi.org/10.1016/j.baae.2004.03.001
  3. Banks PB, AE Byrom, RP Pech and CR Dickman. 2018. Reinvasion is not invasion again. BioScience 68:792-804. https://doi.org/10.1093/biosci/biy076
  4. Barrett SC. 2015. Foundations of invasion genetics: the Baker and Stebbins legacy. Mol. Ecol. 24:1927-1941. https://doi.org/10.1111/mec.13014
  5. Blackburn TM, P Pysek, S Bacher, JT Carlton, RP Duncan, V Jarosik, JRU Wilson and DM Richardson. 2011. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26:333-339. https://doi.org/10.1016/j.tree.2011.03.023
  6. Bonte D and Q Bafort. 2018. The importance and adaptive value of life-history evolution for metapopulation dynamics. J. Anim. Ecol. 88:24-34. https://doi.org/10.1111/1365-2656.12928
  7. Byeon DH, S Jung and WH Lee. 2018. Review of CLIMEX and MaxEnt for studying species distribution in South Korea. J. Asia-Pac. Biodivers. 11:325-333. https://doi.org/10.1016/j.japb.2018.06.002
  8. Byeon SY, HJ Oh, S Kim, SH Yun, JH Kang, SR Park and HJ Lee. 2019. The origin and population genetic structure of the 'golden tide' seaweeds, Sargassum horneri, in Korean waters. Sci. Rep. 9:1-13. https://doi.org/10.1038/s41598-019-44170-x
  9. Byers JE, WG McDowell, SR Dodd, RS Haynie, LM Pintor and SB Wilde. 2013. Climate and pH predict the potential range of the invasive apple snail (Pomacea insularum) in the southeastern United States. PLoS One 8:e56812. https://doi.org/10.1371/journal.pone.0056812
  10. Callaway RM and WM Ridenour. 2004. Novel weapons: invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2:436-443. https://doi.org/10.1890/1540-9295(2004)002[0436:nwisat]2.0.co;2
  11. Carriere Y, DW Crowder and BE Tabashnik. 2010. Evolutionary ecology of insect adaptation to Bt crops. Evol. Appl. 3:561-573. https://doi.org/10.1111/j.1752-4571.2010.00129.x
  12. Catford JA, R Jansson and C Nilsson. 2009. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15:22-40. https://doi.org/10.1111/j.1472-4642.2008.00521.x
  13. Catlin DH, SL Zeigler, MB Brown, LR Dinan, JD Fraser, KL Hunt and JG Jorgensen. 2016. Metapopulation viability of an endangered shorebird depends on dispersal and human-created habitats: piping plovers (Charadrius melodus) and prairie rivers. Mov. Ecol. 4:1-15. https://doi.org/10.1186/s40462-016-0072-y
  14. CBD. 2022. Invasive Alien Species. Convention on Biological Diversity. UN Environment Programme. Retrieved January 8, 2022, from https://www.cbd.int/invasive/.
  15. Chapman DS, L Makra, R Albertini, M Bonini, A Paldy, V Rodinkova, B Sikoparija, E Weryszko-Chmielewska and JM Bullock. 2016. Modelling the introduction and spread of non-native species: International trade and climate change drive ragweed invasion. Glob. Change Biol. 22:3067-3079. https://doi.org/10.1111/gcb.13220
  16. Choi DS, JS Park, MJ Kim, JS Kim, SY Jeong, JS Jeong, J Park and I Kim. 2018. Geographic variation in the spotted-wing drosophila, Drosophila suzukii (Diptera: Drosophilidae), based on mitochondrial DNA sequences. Mitochondrial DNA Part A 29:312-322. https://doi.org/10.1080/24701394.2016.1278534
  17. Choi HS, SY Jeong, KH Lee, JS Jeong, JS Park, NR Jeong, MJ Kim, W Lee and I Kim. 2021. Population genetic analysis of Salurnis marginella (Hemiptera: Flatidae). Int. J. Indust. Entomol. 43:67-77. https://doi.org/10.7852/ijie.2021.43.2.67
  18. Choi KH. 2009. Risk assessment of ballast water-mediated invasions of phytoplankton: a modeling study. Ocean Sci. J. 44:221-226. https://doi.org/10.1007/s12601-009-0021-4
  19. Choi MB, SA Lee, HY Suk and JW Lee. 2013. Microsatellite variation in colonizing populations of yellow-legged Asian hornet, Vespa velutina nigrithorax, in South Korea. Entomol. Res. 43:208-214. https://doi.org/10.1111/1748-5967.12027
  20. Chun YJ, B Fumanal, B Laitung and F Bretagnolle. 2010. Gene flow and population admixture as the primary post-invasion processes in common ragweed (Ambrosia artemisiifolia) populations in France. New Phytol. 185:1100-1107. https://doi.org/10.1111/j.1469-8137.2009.03129.x
  21. Colautti RI and DM Richardson. 2009. Subjectivity and flexibility in invasion terminology: too much of a good thing? Biol. Invasions 11:1225-1229. https://doi.org/10.1007/s10530-008-9333-z
  22. Colautti RI, JM Alexander, KM Dlugosch, SR Keller and SE Sultan. 2017. Invasions and extinctions through the looking glass of evolutionary ecology. Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 372:20160031. https://doi.org/10.1098/rstb.2016.0031
  23. Coutts SR, KJ Helmstedt and JR Bennett. 2018. Invasion lags: The stories we tell ourselves and our inability to infer process from pattern. Divers. Distrib. 24:244-251. https://doi.org/10.1111/ddi.12669
  24. Crooks JA. 2005. Lag times and exotic species: The ecology and management of biological invasions in slow-motion1. Ecoscience 12:316-329. https://doi.org/10.2980/i1195-6860-12-3-316.1
  25. Davidson AM, M Jennions and AB Nicotra. 2011. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol. Lett. 14:419-431. https://doi.org/10.1111/j.1461-0248.2011.01596.x
  26. den Boer PJ. 1986. The present status of the competitive exclusion principle. Trends Ecol. Evol. 1:25-28. https://doi.org/10.1016/0169-5347(86)90064-9
  27. Detwiler JT and CD Criscione. 2014. Recently introduced invasive geckos quickly reach population genetic equilibrium dynamics. Biol. Invasions 16:2653-2667. https://doi.org/10.1007/s10530-014-0694-1
  28. Dlugosch KM and IM Parker. 2008. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17:431-449. https://doi.org/10.1111/j.1365-294x.2007.03538.x
  29. Dormann CF. 2007. Promising the future? Global change projections of species distributions. Basic Appl. Ecol. 8:387-397. https://doi.org/10.1016/j.baae.2006.11.001
  30. Drake JM. 2004. Allee effects and the risk of biological invasion. Risk Anal. 24:795-802. https://doi.org/10.1111/j.0272-4332.2004.00479.x
  31. Drake JM and DM Lodge. 2006. Allee effects, propagule pressure and the probability of establishment: risk analysis for biological invasions. Biol. Invasions 8:365-375. https://doi.org/10.1007/s10530-004-8122-6
  32. Dubart M, JH Pantel, JP Pointier, P Jarne and P David. 2019. Modeling competition, niche, and coexistence between an invasive and a native species in a two-species metapopulation. Ecology 100:e02700. https://doi.org/10.1002/ecy.2700
  33. Duncan RP, TM Blackburn and D Sol. 2003. The ecology of bird introductions. Annu. Rev. Ecol. Evol. Syst. 34:71-98. https://doi.org/10.1146/annurev.ecolsys.34.011802.132353
  34. Elith J and JR Leathwick. 2009. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40:677-697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
  35. Estoup A, V Ravigne, R Hufbauer, R Vitalis, M Gautier and B Facon. 2016. Is there a genetic paradox of biological invasion? Annu. Rev. Ecol. Evol. Syst. 47:51-72. https://doi.org/10.1146/annurev-ecolsys-121415-032116
  36. Facon B, RA Hufbauer, A Tayeh, A Loiseau, E Lombaert, R Vitalis, T Guillemaud, JG Lundgren and A Estoup. 2011. Inbreeding depression is purged in the invasive insect Harmonia axyridis. Curr. Biol. 21:424-427. https://doi.org/10.1016/j.cub.2011.01.068
  37. Facon B, P Jarne, JP Pointier and P David. 2005. Hybridization and invasiveness in the freshwater snail Melanoides tuberculate: hybrid vigour is more important than increase in genetic variance. J. Evol. Biol. 18:524-535. https://doi.org/10.1111/j.1420-9101.2005.00887.x
  38. Facon B, JP Pointier, P Jarne, V Sarda and P David. 2008. High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Curr. Biol. 18:363-367. https://doi.org/10.1016/j.cub.2008.01.063
  39. Fountain T, L Duvaux, G Horsburgh, K Reinhardt and RK Butlin. 2014. Human-facilitated metapopulation dynamics in an emerging pest species, Cimex lectularius. Mol. Ecol. 23:1071-1084. https://doi.org/10.1111/mec.12673
  40. Freckleton RP and AR Watkinson. 2002. Large-scale spatial dynamics of plants: metapopulations, regional ensembles and patchy populations. J. Ecol. 90:419-434. https://doi.org/10.1046/j.1365-2745.2002.00692.x
  41. Fronhofer EA, A Kubisch, FM Hilker, T Hovestadt and HJ Poethke. 2012. Why are metapopulations so rare? Ecology 93:1967-1978. https://doi.org/10.1890/11-1814.1
  42. Gertzen EL, B Leung and ND Yan. 2011. Propagule pressure, Allee effects and the probability of establishment of an invasive species (Bythotrephes longimanus). Ecosphere 2:1-17. https://doi.org/10.1890/es10-00170.1
  43. Glemin S. 2003. How are deleterious mutations purged? Drift versus nonrandom mating. Evolution 57:2678-2687. https://doi.org/10.1111/j.0014-3820.2003.tb01512.x
  44. Gould SJ and ES Vrba. 1982. Exaptation - a missing term in the science of form. Paleobiology 8:4-15. https://doi.org/10.1017/s0094837300004310
  45. Guiney MS, DA Andow and TT Wilder. 2010. Metapopulation structure and dynamics of an endangered butterfly. Basic Appl. Ecol. 11:354-362. https://doi.org/10.1016/j.baae.2009.09.006
  46. Guisan A and W Thuiller. 2005. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8:993-1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
  47. Hahn MA and LH Rieseberg. 2017. Genetic admixture and heterosis may enhance the invasiveness of common ragweed. Evol. Appl. 10:241-250. https://doi.org/10.1111/eva.12445
  48. Han JE, BH Choi and M Kwak. 2018. Genetic diversity and population structure of endangered Neofinetia falcata (Orchidaceae) in South Korea based on microsatellite analysis. J. Species Res. 7:354-362. https://doi.org/10.12651/JSR.2018.7.4.354
  49. Hanski I. 1997. Metapopulation dynamics: from concepts and observations to predictive models. pp. 69-91. In: Metapopulation Biology (Hanski IA and ME Gilpin, eds.). Academic Press. San Diego, CA. https://doi.org/10.1016/b978-012323445-2/50007-9
  50. Hanski I. 1998. Metapopulation dynamics. Nature 396:41-49. https://doi.org/10.1038/23876
  51. Hanski I and M Gilpin. 1991. Metapopulation dynamics: brief history and conceptual domain. Biol. J. Linnean Soc. 42:3-16. https://doi.org/10.1111/j.1095-8312.1991.tb00548.x
  52. Hanski IA and D Simberloff. 1997. The metapopulation approach, its history, conceptual domain, and application to conservation. pp. 5-26. In: Metapopulation Biology (Hanski IA and ME Gilpin, eds.). Academic Press. San Diego, CA. https://doi.org/10.1016/b978-012323445-2/50003-1
  53. Harding KC and JM McNamara. 2002. A unifying framework for metapopulation dynamics. Am. Nat. 160:173-185. https://doi.org/10.1086/341014
  54. Harding KC, JM McNamara and RD Holt. 2006. Understanding invasions in patchy habitats through metapopulation theory. pp. 371-403. In: Conceptual Ecology and Invasion Biology: Reciprocal Approaches to Nature (Cadotte MW, SM Mcmahon and T Fukami, eds.). Springer. Dordrecht, Netherlands. https://doi.org/10.1007/1-4020-4925-0_17
  55. Harrison S. 1991. Local extinction in a metapopulation context: an empirical evaluation. Biol. J. Linnean Soc. 42:73-88. https://doi.org/10.1016/b978-0-12-284120-0.50008-5
  56. Hassell MP, HN Comins and RM Mayt. 1991. Spatial structure and chaos in insect population dynamics. Nature 353:255-258. https://doi.org/10.1038/353255a0
  57. Hastings A and S Harrison. 1994. Metapopulation dynamics and genetics. Annu. Rev. Ecol. Evol. Syst. 25:167-188. https://doi.org/10.1146/annurev.es.25.110194.001123
  58. Hayes KR and SC Barry. 2008. Are there any consistent predictors of invasion success? Biol. Invasions 10:483-506. https://doi.org/10.1007/s10530-007-9146-5
  59. Heger T, WC Saul and L Trepl. 2013. What biological invasions 'are' is a matter of perspective. J. Nat. Conserv. 21:93-96. https://doi.org/10.1016/j.jnc.2012.11.002
  60. Hendry AP. 2018. A critique for eco-evolutionary dynamics. Funct. Ecol. 33:84-94. https://doi.org/10.1111/1365-2435.13244
  61. Huey RB, GW Gilchrist and AP Hendry. 2005. Using invasive species to study evolution. pp. 139-164. In: Species Invasions: Insights into Ecology, Evolution, and Biogeography (Sax DF, JJ Stachowicz and SD Gaines, eds.). Sinauer Sunderland. Sunderland, MA.
  62. Hufbauer RA. 2008. Biological invasions: paradox lost and paradise gained. Curr. Biol. 18:R246-R247. https://doi.org/10.1016/j.cub.2008.01.038
  63. Hufbauer RA, B Facon, V Ravigne, J Turgeon, J Foucaud, CE Lee, O Rey and A Estoup. 2012. Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to humanaltered habitats within the native range can promote invasions. Evol. Appl. 5:89-101. https://doi.org/10.1111/j.1752-4571.2011.00211.x
  64. Hufbauer RA, M Szucs, E Kasyon, C Youngberg, MJ Koontz, C Richards, T Tuff and BA Melbourne. 2015. Three types of rescue can avert extinction in a changing environment. Proc. Natl. Acad. Sci. U. S. A. 112:10557-10562. https://doi.org/10.1073/pnas.1504732112
  65. Inman RM, BL Brock, KH Inman, SS Sartorius, BC Aber, B Giddings, SL Cain, ML Orme, JA Fredrick, BJ Oakleaf, KL Alt, E Odell and G Chapron. 2013. Developing priorities for metapopulation conservation at the landscape scale: wolverines in the western United States. Biol. Conserv. 166:276-286. https://doi.org/10.1016/j.biocon.2013.07.010
  66. IUCN. 2018. Invasive Alien Species and Sustainable Development. International Union for Conservation of Nature. Gland, Switzerland. Retrieved January 26, 2018, from https://www.iucn.org/resources/issues-briefs/invasive-alien-species-and-sustainable-development.
  67. Ives AR and WH Settle. 1997. Metapopulation dynamics and pest control in agricultural systems. Am. Nat. 149:220-246. https://doi.org/10.1086/285988
  68. Jeong IH, B Park, GS Lee, Q Wu, F Li, Z Zhang and Y Zhu. 2020. Comparison of B and Q biotype distribution, insecticidal mortality, and TYLCV viruliferous rate between Korean and Chinese local populations of Bemisia tabaci. Korean J. Environ. Biol. 38:616-624. https://doi.org/10.11626/kjeb.2020.38.4.616
  69. Jeong JS, MJ Kim, JS Park, KH Lee, YH Jo, JI Takahashi, YS Choi and I Kim. 2021. Tracing the invasion characteristics of the yellow-legged hornet, Vespa velutina nigrithorax (Hymenoptera: Vespidae), in Korea using newly detected variable mitochondrial DNA sequences. J. Asia-Pac. Entomol. 24:135-147. https://doi.org/10.1016/j.aspen.2021.03.004
  70. Jeschke JM and DL Strayer. 2008. Usefulness of bioclimatic models for studying climate change and invasive species. Ann. N.Y. Acad. Sci. 1134:1-24. https://doi.org/10.1196/annals.1439.002
  71. Jung SW, JH Lee, T Kawai, PJ Kim and S Kim. 2022. Distribution status of invasive alien species (Procambarus clarkii (Girard, 1852)) using biomonitoring with environmental DNA in South Korea. Korean J. Environ. Ecol. 36:368-380. https://doi.org/10.13047/kjee.2022.36.4.368
  72. Jung SY, JW Lee, HT Shin, SJ Kim, JB An, TI Heo, JM Chung and YC Cho. 2017a. Invasive Alien Plants in South Korea. Korea National Arboretum. Pocheon, Korea.
  73. Jung JM, S Jung, DH Byeon and WH Lee. 2017b. Model-based prediction of potential distribution of the invasive insect pest, spotted lanternfly Lycorma delicatula (Hemiptera: Fulgoridae), by using CLIMEX. J. Asia-Pac. Biodivers. 10:532-538. https://doi.org/10.1016/j.japb.2017.07.001
  74. Jung N, SY Chae and JW Lee. 2021. Invasion dynamics of a population growth model with the Allee effect in a one-dimensional patchy structure. J. Korean Phys. Soc. 79:499-503. https://doi.org/10.1007/s40042-021-00236-6
  75. Kanarek AR, CT Webb, M Barfield and RD Holt. 2015. Overcoming Allee effects through evolutionary, genetic, and demographic rescue. J. Biol. Dyn. 9:15-33. https://doi.org/10.1080/17513758.2014.978399
  76. Kang JH, DA Yi, AV Kuprin, C Han and YJ Bae. 2021. Phylogeographic investigation of an endangered longhorn beetle, Callipogon relictus (Coleoptera: Cerambycidae), in Northeast Asia: Implications for future restoration in Korea. Insects 12:555. https://doi.org/10.3390/insects12060555
  77. Keane RM and MJ Crawley. 2002. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17:164-170. https://doi.org/10.1016/s0169-5347(02)02499-0
  78. Kim DE. 2018. Management system of invasive alien species threating biodiversity in Korea and suggestions for the improvement. J. Environ. Impact Assess. 27:33-55. https://doi.org/10.14249/eia.2018.27.1.33
  79. Kim E, W Song, E Yoon and H Jung. 2016a. Definition of invasive disturbance species and its influence factor. J. Korean. Env. Res. Tech. 19:155-170. https://doi.org/10.13087/kosert.2016.19.1.155
  80. Kim J, G Ni, T Kim, JY Chun, EM Kern and JK Park. 2019. Phylogeography of the highly invasive sugar beet nematode, Heterodera schachtii (Schmidt, 1871), based on microsatellites. Evol. Appl. 12:324-336. https://doi.org/10.1111/eva.12719
  81. Kim J, T Kim, YC Lee, JY Chun, EM Kern, J Jung and JK Park. 2016b. Characterization of 15 microsatellite loci and genetic analysis of Heterodera schachtii (Nematoda: Heteroderidae) in South Korea. Biochem. Syst. Ecol. 64:97-104. https://doi.org/10.1016/j.bse.2015.11.013
  82. Kim JE and KG An. 2021. Long-term distribution trend analysis of largemouth bass (Micropterus salmoides), based on National Fish Database, and the ecological risk assessments. Korean J. Environ. Biol. 39:207-217. https://doi.org/10.11626/kjeb.2021.39.2.207
  83. Kim SB and DS Kim. 2018. A tentative evaluation for population establishment of Bactrocera dorsalis (Diptera: Tephritidae) by its population modeling: Considering the temporal distribution of host plants in a selected area in Jeju, Korea. J. Asia-Pac. Entomol. 21:451-465. https://doi.org/10.1016/j.aspen.2018.01.022
  84. Kim A, YC Kim and DH Lee. 2020a. Home range and daily activity of nutria (Myocastorcoypus) using radio tracking in South Korea. J. Environ. Impact Assess 29:182-197. https://doi.org/10.14249/eia.2020.29.3.182
  85. Kim YR, JE Jang, HK Choi and HJ Lee. 2020b. Phylogeographic and population genetic study of a Korean endemic freshwater fish species, Zacco koreanus. Korean J. Environ. Biol. 38:650-657. https://doi.org/10.11626/KJEB.2020.38.4.650
  86. Kolar CS and DM Lodge. 2001. Progress in invasion biology: predicting invaders. Trends Ecol. Evol. 16:199-204. https://doi.org/10.1016/s0169-5347(01)02101-2
  87. Kwon DH, SJ Kim, TJ Kang, JH Lee and DH Kim. 2017. Analysis of the molecular phylogenetics and genetic structure of an invasive alien species, Ricania shantungensis, in Korea. J. Aisa Pac. Entomol. 20:901-906. https://doi.org/10.1016/j.aspen.2017.06.008
  88. Kubisch A, RD Holt, HJ Poethke and EA Fronhofer. 2014. Where am I and why? Synthesizing range biology and the eco-evolutionary dynamics of dispersal. Oikos 123:5-22. https://doi.org/10.1111/j.1600-0706.2013.00706.x
  89. Lamy T, JP Pointier, P Jarne and P David. 2012. Testing metapopulation dynamics using genetic, demographic and ecological data. Mol. Ecol. 21:1394-1410. https://doi.org/10.1111/j.1365-294x.2012.05478.x
  90. Latombe G, S Canavan, H Hirsch, C Hui, S Kumschick, MM Nsikani, LJ Potgieter, TB Robinson, WC Saul, SC Turner, JRU Wilson, FA Yannelli and DM Richardson. 2019. A four-component classification of uncertainties in biological invasions: implications for management. Ecosphere 10:e02669. https://doi.org/10.1002/ecs2.2669
  91. Laugier GJM, G Le Moguedec, W Su, A Tayeh, L Soldati, B Serrate, A Estoup and B Facon. 2016. Reduced population size can induce quick evolution of inbreeding depression in the invasive ladybird Harmonia axyridis. Biol. Invasions 18:2871-2881. https://doi.org/10.1007/s10530-016-1179-1
  92. Lee CE. 2002. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17:386-391. https://doi.org/10.1016/s0169-5347(02)02554-5
  93. Lee CS and Y Moh. 2020. A study on the risk assessment system for the harmful marine species: the legal problems and solutions. Korean J. Environ. Biol. 38:691-704. https://doi.org/10.11626/KJEB.2020.38.4.691
  94. Lee KH, JS Jeong, JS Park, MJ Kim, NR Jeong, SY Jeong, GS Lee, W Lee and I Kim. 2021a. Tracing the invasion and expansion characteristics of the flatid planthopper, Metcalfa pruinosa (Hemiptera: Flatidae), in Korea using mitochondrial DNA sequences. Insects 12:4. https://doi.org/10.3390/insects12010004
  95. Lee S, Y Lee and S Lee. 2020. Population genetic structure of Anoplophora glabripennis in South Korea: Invasive populations in the native range? J. Pest Sci. 93:1181-1196. https://doi.org/10.1007/s10340-020-01245-3
  96. Lee WH, JM Jung, HS Lee, JH Lee and S Jung. 2021b. Evaluating the invasion risk of longhorn crazy ants (Paratrechina longicornis) in South Korea using spatial distribution model. J. Asia-Pac. Entomol. 24:279-287. https://doi.org/10.1016/j.aspen.2021.01.007
  97. Lenda M, M Zagalska-Neubauer, G Neubauer and P Skorka. 2010. Do invasive species undergo metapopulation dynamics? A case study of the invasive Caspian gull, Larus cachinnans, in Poland. J. Biogeogr. 37:1824-1834. https://doi.org/10.1111/j.1365-2699.2010.02344.x
  98. Levins R. 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15:237-240. https://doi.org/10.1093/besa/15.3.237
  99. Lodge DM, S Williams, HJ MacIsaac, KR Hayes, B Leung, S Reichard, RN Mack, RB Moyle, M Smith, DA Andow, JT Carlton and A McMichael. 2006. Biological invasions: recommendations for US policy and management. Ecol. Appl. 16:2035-2054. https://doi.org/10.1890/1051-0761(2006)016[2035:birfup]2.0.co;2
  100. MacArthur RH and EO Wilson. 1967. The Theory of Island Biogeography. Princeton University Press. Princeton, NJ.
  101. Mackay-Smith A, MK Dornon, R Lucier, A Okimoto, FM de Sousa, M Rodriguero, V Confalonieri, AA Lanteri and AS Sequeira. 2021. Host-specific gene expression as a tool for introduction success in Naupactus parthenogenetic weevils. PLoS One 16:e0248202. https://doi.org/10.1101/2021.02.23.432442
  102. Marchini GL, NC Sherlock, AP Ramakrishnan, DM Rosenthal and MB Cruzan. 2016. Rapid purging of genetic load in a metapopulation and consequences for range expansion in an invasive plant. Biol. Invasions 18:183-196. https://doi.org/10.1007/s10530-015-1001-5
  103. Maron JL and M Vila. 2001. When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:361-373. https://doi.org/10.1034/j.1600-0706.2001.950301.x
  104. Marsico TD, JW Burt, EK Espeland, GW Gilchrist, MA Jamieson, L Lindstrom, GK Roderick, S Swope, M Szucs and ND Tsutsui. 2010. PERSPECTIVE: Underutilized resources for studying the evolution of invasive species during their introduction, establishment, and lag phases. Evol. Appl. 3:203-219. https://doi.org/10.1111/j.1752-4571.2009.00101.x
  105. McCallum H and A Dobson. 2002. Disease, habitat fragmentation and conservation. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 269:2041-2049. https://doi.org/10.1098/rspb.2002.2079
  106. McManus LC, EW Tekwa, DE Schindler, TE Walsworth, MA Colton, MM Webster, TE Essington, DL Forrest, SR Palumbi, PH Mumby and ML Pinsky. 2021. Evolution reverses the effect of network structure on metapopulation persistence. Ecology 102:e03381. https://doi.org/10.1002/ecy.3381
  107. McRae BH. 2006. Isolation by resistance. Evolution 60:1551-1561. https://doi.org/10.1111/j.0014-3820.2006.tb00500.x
  108. Ministry of Environment. 2014. Research of Medium- and LongTerm Management Plan for Alien Species. Ministry of Environment. Sejong, Korea. pp. 3-8.
  109. Moore KA and SC Elmendorf. 2006. Propagule vs. niche limitation: untangling the mechanisms behind plant species' distributions. Ecol. Lett. 9:797-804. https://doi.org/10.1111/j.1461-0248.2006.00923.x
  110. Nackley LL, AG West, AL Skowno and WJ Bond. 2017. The nebulous ecology of native invasions. Trends Ecol. Evol. 32:814-824. https://doi.org/10.1016/j.tree.2017.08.003
  111. Nakazawa T. 2015. Introducing stage-specific spatial distribution into the Levins metapopulation model. Sci. Rep. 5:1-7. https://doi.org/10.1038/srep07871
  112. National Institute of Ecology. 2020a. Nationwide Survey of Non-Native Species in Korea (2020). National Institute of Ecology. Seocheon, Korea.
  113. National Institute of Ecology. 2020b. Investigating Ecological Risk of Alien Species (2020). National Institute of Ecology. Seocheon, Korea.
  114. Noda T and M Ohira. 2020. Transition in population dynamics of the intertidal barnacle Balanus glandula after invasion: causes and consequences of change in larval supply. J. Mar. Sci. Eng. 8:915. https://doi.org/10.3390/jmse8110915
  115. Nosil P, SM Flaxman, JL Feder and Z Gompert. 2020. Increasing our ability to predict contemporary evolution. Nat. Commun. 11:1-6. https://doi.org/10.1038/s41467-020-19437-x
  116. Olivieri I, D Couvet and PH Gouyon. 1990. The genetics of transient populations: research at the metapopulation level. Trends Ecol. Evol. 5:207-210. https://doi.org/10.1016/0169-5347(90)90132-w
  117. Pannell JR and DJ Obbard. 2003. Probing the primacy of the patch: what makes a metapopulation? J. Ecol. 91:485-488. https://doi.org/10.1046/j.1365-2745.2003.00784.x
  118. Park CG, S Min, GS Lee, S Kim, Y Lee, S Lee, KJ Hong, SW Wilson, SI Akimoto and W Lee. 2016a. Genetic variability of the invasive species Metcalfa pruinosa (Hemiptera: Flatidae) in the Republic of Korea. J. Econ. Entomol. 109:1897-1906. https://doi.org/10.1093/jee/tow097
  119. Park M, KS Kim and JH Lee. 2013. Genetic structure of Lycorma delicatula (Hemiptera: Fulgoridae) populations in Korea: implication for invasion processes in heterogeneous landscapes. Bull. Entomol. Res. 103:414-424. https://doi.org/10.1017/s0007485313000011
  120. Park T, H Jang, S Eom, K Son and JJ Park. 2022. Analysis and estimation of species distribution of Mythimna seperata and Cnaphalocrocis medinalis with land-cover data under climate change scenario using MaxEnt. Korean J. Environ. Biol. 40:214-223. https://doi.org/10.11626/kjeb.2022.40.2.214
  121. Park YH, J Kim and H Jung. 2016b. Climate change and ecosystem-based management strategies of invasive alien species. J. Environ. Policy Adm. 24:149-176. https://doi.org/10.15301/jepa.2016.24.4.149
  122. Parry H, R Sadler and D Kriticos. 2013. Practical guidelines for modelling post-entry spread in invasion ecology. NeoBiota 18:41-66. https://doi.org/10.3897/neobiota.18.4305
  123. Pelletier F, D Garant and AP Hendry. 2009. Eco-evolutionary dynamics. Philos. Trans. R. Soc. B-Biol. Sci. 364:1483-1489. https://doi.org/10.1098/rstb.2009.0027
  124. Pergl J, P Pysek, I Perglova and V Jarosik. 2012. Low persistence of a monocarpic invasive plant in historical sites biases our perception of its actual distribution. J. Biogeogr. 39:1293-1302. https://doi.org/10.1111/j.1365-2699.2011.02677.x
  125. Petranka JW. 2007. Evolution of complex life cycles of amphibians: bridging the gap between metapopulation dynamics and life history evolution. Evol. Ecol. 21:751-764. https://doi.org/10.1007/s10682-006-9149-1
  126. Pichlmueller F and JC Russell. 2018. Survivors or reinvaders? Intraspecific priority effect masks reinvasion potential. Biol. Conserv. 227:213-218. https://doi.org/10.1016/j.biocon.2018.09.020
  127. Richardson DM, N Allsopp, CM D'antonio, SJ Milton and M Rejmanek. 2000a. Plant invasions - the role of mutualisms. Biol. Rev. 75:65-93. https://doi.org/10.1111/j.1469-185x.1999.tb00041.x
  128. Richardson DM, P Pysek and JT Carlton. 2010. A compendium of essential concepts and terminology in invasion ecology. pp. 409-420. In: Fifty Years of Invasion Ecology (Richardson DM, ed.). Blackwell Publishing. Hoboken, NJ. https://doi.org/10.1002/9781444329988.ch30
  129. Richardson DM, P Pysek, M Rejmanek, MG Barbour, FD Panetta and CJ West. 2000b. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6:93-107. https://doi.org/10.1046/j.1472-4642.2000.00083.x
  130. Roman J and JA Darling. 2007. Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol. Evol. 22:454-464. https://doi.org/10.1016/j.tree.2007.07.002
  131. Roura-Pascual N, L Brotons, AT Peterson and W Thuiller. 2009. Consensual predictions of potential distributional areas for invasive species: a case study of Argentine ants in the Iberian Peninsula. Biol. Invasions 11: 1017-1031. https://doi.org/10.1007/s10530-008-9313-3
  132. Ruesink JL, IM Parker, MJ Groom and PM Kareiva. 1995. Reducing the risks of nonindigenous species introductions. BioScience 45:465-477. https://doi.org/10.2307/1312790
  133. Russell JC, SD Miller, GA Harper, HE Maclnnes, MJ Wylie and RM Fewster. 2010. Survivors or reinvaders? Using genetic assignment to identify invasive pests following eradication. Biol. Invasions 12:1747-1757. https://doi.org/10.1007/s10530-009-9586-1
  134. Ryoo M and JH Lee. 2002. Population Ecology. Seoul National University Press. Seoul. 
  135. Secretariat of the Convention on Biological Diversity. 2020. Global Biodiversity Outlook 5. Montreal, Canada.
  136. Seebens H, E Briski, S Ghabooli, T Shiganova, HJ MacIsaac and B Blasius. 2019. Non-native species spread in a complex network: the interaction of global transport and local population dynamics determines invasion success. Proc. R. Soc. B-Biol. Sci. 286:20190036. https://doi.org/10.1098/rspb.2019.0036
  137. Signorile AL, J Wang, PWW Lurz, S Bertolino, C Carbone and DC Reuman. 2014. Do founder size, genetic diversity and structure influence rates of expansion of North American grey squirrels in Europe? Divers. Distrib. 20:918-930. https://doi.org/10.1111/ddi.12222
  138. Simberloff D. 2009. The role of propagule pressure in biological invasions. Annu. Rev. Ecol. Evol. Syst. 40:81-102. https://doi.org/10.1146/annurev.ecolsys.110308.120304
  139. Skellam JG. 1951. Random dispersal in theoretical populations. Biometrika 38:196-218. https://doi.org/10.2307/2332328
  140. Smedbol RK, A McPherson, MM Hansen and E Kenchington. 2002. Myths and moderation in marine 'metapopulations'? Fish. Fish. 3:20-35. https://doi.org/10.1046/j.1467-2979.2002.00062.x
  141. Smith MA and DM Green. 2005. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110128. https://doi.org/10.1111/j.0906-7590.2005.04042.x
  142. Szacki J. 1999. Spatially structured populations: how much do they match the classic metapopulation concept? Landsc. Ecol. 14:369-379. https://doi.org/10.1023/A:1008058208370
  143. Tamburello N, BO Ma and IM Cote. 2019. From individual movement behaviour to landscape-scale invasion dynamics and management: a case study of lionfish metapopulations. Philos. Trans. R. Soc. B-Biol. Sci. 374:20180057. https://doi.org/10.1098/rstb.2018.0057
  144. The Government of the Republic of Korea. 2019. Second Management Plan for Alien Species. Sejong, Korea.
  145. Theoharides KA and JS Dukes. 2007. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol. 176:256-273. https://doi.org/10.1111/j.1469-8137.2007.02207.x
  146. Tsutsui ND, AV Suarez and RK Grosberg. 2003. Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species. Proc. Natl. Acad. Sci. U. S. A. 100:1078-1083. https://doi.org/10.1073/pnas.0234412100
  147. Uesugi A, DJ Baker, N de Silva, K Nurkowski and KA Hodgins. 2020. A lack of genetically compatible mates constrains the spread of an invasive weed. New Phytol. 226:1864-1872. https://doi.org/10.1111/nph.16496
  148. U.S. Department of Agriculture. 1999. Executive Order 13112 - Invasive Species, Section 1. Definitions. Washington, D.C.
  149. USDA-APHIS-PPQ. 2019. Guidelines for the USDA-APHISPPQ Weed Risk Assessment Process. US Department of Agriculture (USDA), Animal and Plant Health Inspection Service(APHIS), Plant Protection and Quarantine(PPQ). Raleigh, NC.
  150. Verhoeven KJ, M Macel, LM Wolfe and A Biere. 2011. Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc. R. Soc. B-Biol. Sci. 278:2-8. https://doi.org/10.1098/rspb.2010.1272
  151. Simon-Porcar VI, JL Silva and M Vallejo-Marin. 2021. Rapid local adaptation in both sexual and asexual invasive populations of monkeyflowers (Mimulus spp.). Ann. Bot. 127:655-668. https://doi.org/10.1101/2020.12.19.423575
  152. Wells JV and ME Richmond. 1995. Populations, metapopulations, and species populations: what are they and who should care? Wildl. Soc. Bull. 458-462.
  153. Whitlock MC and DE McCauley. 1999. Indirect measures of gene flow and migration: FST≠1/(4Nm+1). Heredity 82:117-125. https://doi.org/10.1038/sj.hdy.6884960
  154. Williams CK, I Parer, BJ Coman, J Burley and ML Braysher. 1995. Managing Vertebrate Pests: Rabbits. Australian Government Publishing Service. Canberra. https://doi.org/10.1111/j.1751-0813.1996.tb10031.x
  155. Williams MI and RK Dumroese. 2013. Preparing for climate change: forestry and assisted migration. J. For. 111:287-297. https://doi.org/10.5849/jof.13-016
  156. Williamson M and A Fitter. 1996. The varying success of invaders. Ecology 77:1661-1666. https://doi.org/10.2307/2265769
  157. Wilson JRU, EE Dormontt, PJ Prentis, AJ Lowe and DM Richardson. 2009. Something in the way you move: dispersal pathways affect invasion success. Trends Ecol. Evol. 24:136-144. https://doi.org/10.1016/j.tree.2008.10.007
  158. Wright S. 1931. Evolution in Mendelian populations. Genetics 16:97-159. https://doi.org/10.1093/genetics/16.2.97