Browse > Article
http://dx.doi.org/10.11626/KJEB.2022.40.4.525

Availability of the metapopulation theory in research of biological invasion: Focusing on the invasion success  

Jaejun Song (Department of Environmental Science and Ecological Engineering, Korea University)
Jinsol Hong (Ojeong Resilience Institute, Korea University)
Kijong Cho (Department of Environmental Science and Ecological Engineering, Korea University)
Publication Information
Korean Journal of Environmental Biology / v.40, no.4, 2022 , pp. 525-549 More about this Journal
Abstract
The process of biological invasion is led by the dynamics of a population as a demographic and evolutionary unit. Spatial structure can affect the population dynamics, and it is worth being considered in research on biological invasion which is always accompanied by dispersal. Metapopulation theory is a representative approach to spatially structured populations, which is chiefly applied in the field of ecology and evolutionary biology despite the controversy about its definition. In this study, metapopulation was considered as a spatially structured population that includes at least one subpopulation with significant extinction probability. The early phase of the invasion is suitable to be analyzed in aspects of the metapopulation concept because the introduced population usually has a high extinction probability, and their ecological·genetic traits determining the invasiveness can be affected by the metapopulation structure. Although it is important in the explanation of the prediction of the invasion probability, the metapopulation concept is rarely used in ecological research about biological invasion in Korea. It is expected that applying the metapopulation theory can supply a more detailed investigation of the invasion process at the population level, which is relatively inadequate in Korea. In this study, a framework dividing the invasive metapopulation into long- and middle-distance scales by the relative distance of movement to the natural dispersal range of species is proposed to easily analyze the effect of a metapopulation in real cases. Increased understanding of the mechanisms underlying invasions and improved prediction of future invasion risk are expected with the metapopulation concept and this framework.
Keywords
metapopulation; introduced species; eco-evolutionary dynamics; invasiveness; propagule pressure;
Citations & Related Records
Times Cited By KSCI : 16  (Citation Analysis)
연도 인용수 순위
1 Tsutsui ND, AV Suarez and RK Grosberg. 2003. Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species. Proc. Natl. Acad. Sci. U. S. A. 100:1078-1083. https://doi.org/10.1073/pnas.0234412100   DOI
2 Uesugi A, DJ Baker, N de Silva, K Nurkowski and KA Hodgins. 2020. A lack of genetically compatible mates constrains the spread of an invasive weed. New Phytol. 226:1864-1872. https://doi.org/10.1111/nph.16496   DOI
3 U.S. Department of Agriculture. 1999. Executive Order 13112 - Invasive Species, Section 1. Definitions. Washington, D.C.
4 USDA-APHIS-PPQ. 2019. Guidelines for the USDA-APHISPPQ Weed Risk Assessment Process. US Department of Agriculture (USDA), Animal and Plant Health Inspection Service(APHIS), Plant Protection and Quarantine(PPQ). Raleigh, NC.
5 Verhoeven KJ, M Macel, LM Wolfe and A Biere. 2011. Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc. R. Soc. B-Biol. Sci. 278:2-8. https://doi.org/10.1098/rspb.2010.1272   DOI
6 Simon-Porcar VI, JL Silva and M Vallejo-Marin. 2021. Rapid local adaptation in both sexual and asexual invasive populations of monkeyflowers (Mimulus spp.). Ann. Bot. 127:655-668. https://doi.org/10.1101/2020.12.19.423575   DOI
7 Wells JV and ME Richmond. 1995. Populations, metapopulations, and species populations: what are they and who should care? Wildl. Soc. Bull. 458-462.
8 Whitlock MC and DE McCauley. 1999. Indirect measures of gene flow and migration: FST≠1/(4Nm+1). Heredity 82:117-125. https://doi.org/10.1038/sj.hdy.6884960   DOI
9 Williams CK, I Parer, BJ Coman, J Burley and ML Braysher. 1995. Managing Vertebrate Pests: Rabbits. Australian Government Publishing Service. Canberra. https://doi.org/10.1111/j.1751-0813.1996.tb10031.x   DOI
10 Williams MI and RK Dumroese. 2013. Preparing for climate change: forestry and assisted migration. J. For. 111:287-297. https://doi.org/10.5849/jof.13-016   DOI
11 Williamson M and A Fitter. 1996. The varying success of invaders. Ecology 77:1661-1666. https://doi.org/10.2307/2265769   DOI
12 Wilson JRU, EE Dormontt, PJ Prentis, AJ Lowe and DM Richardson. 2009. Something in the way you move: dispersal pathways affect invasion success. Trends Ecol. Evol. 24:136-144. https://doi.org/10.1016/j.tree.2008.10.007   DOI
13 Wright S. 1931. Evolution in Mendelian populations. Genetics 16:97-159. https://doi.org/10.1093/genetics/16.2.97   DOI
14 Jeschke JM and DL Strayer. 2008. Usefulness of bioclimatic models for studying climate change and invasive species. Ann. N.Y. Acad. Sci. 1134:1-24. https://doi.org/10.1196/annals.1439.002   DOI
15 Jung SW, JH Lee, T Kawai, PJ Kim and S Kim. 2022. Distribution status of invasive alien species (Procambarus clarkii (Girard, 1852)) using biomonitoring with environmental DNA in South Korea. Korean J. Environ. Ecol. 36:368-380. https://doi.org/10.13047/kjee.2022.36.4.368   DOI
16 Jung SY, JW Lee, HT Shin, SJ Kim, JB An, TI Heo, JM Chung and YC Cho. 2017a. Invasive Alien Plants in South Korea. Korea National Arboretum. Pocheon, Korea.
17 Jung JM, S Jung, DH Byeon and WH Lee. 2017b. Model-based prediction of potential distribution of the invasive insect pest, spotted lanternfly Lycorma delicatula (Hemiptera: Fulgoridae), by using CLIMEX. J. Asia-Pac. Biodivers. 10:532-538. https://doi.org/10.1016/j.japb.2017.07.001   DOI
18 Jung N, SY Chae and JW Lee. 2021. Invasion dynamics of a population growth model with the Allee effect in a one-dimensional patchy structure. J. Korean Phys. Soc. 79:499-503. https://doi.org/10.1007/s40042-021-00236-6   DOI
19 Kang JH, DA Yi, AV Kuprin, C Han and YJ Bae. 2021. Phylogeographic investigation of an endangered longhorn beetle, Callipogon relictus (Coleoptera: Cerambycidae), in Northeast Asia: Implications for future restoration in Korea. Insects 12:555. https://doi.org/10.3390/insects12060555   DOI
20 Kanarek AR, CT Webb, M Barfield and RD Holt. 2015. Overcoming Allee effects through evolutionary, genetic, and demographic rescue. J. Biol. Dyn. 9:15-33. https://doi.org/10.1080/17513758.2014.978399   DOI
21 Keane RM and MJ Crawley. 2002. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17:164-170. https://doi.org/10.1016/s0169-5347(02)02499-0   DOI
22 Kim DE. 2018. Management system of invasive alien species threating biodiversity in Korea and suggestions for the improvement. J. Environ. Impact Assess. 27:33-55. https://doi.org/10.14249/eia.2018.27.1.33   DOI
23 Kim E, W Song, E Yoon and H Jung. 2016a. Definition of invasive disturbance species and its influence factor. J. Korean. Env. Res. Tech. 19:155-170. https://doi.org/10.13087/kosert.2016.19.1.155   DOI
24 Kim J, G Ni, T Kim, JY Chun, EM Kern and JK Park. 2019. Phylogeography of the highly invasive sugar beet nematode, Heterodera schachtii (Schmidt, 1871), based on microsatellites. Evol. Appl. 12:324-336. https://doi.org/10.1111/eva.12719   DOI
25 Kim J, T Kim, YC Lee, JY Chun, EM Kern, J Jung and JK Park. 2016b. Characterization of 15 microsatellite loci and genetic analysis of Heterodera schachtii (Nematoda: Heteroderidae) in South Korea. Biochem. Syst. Ecol. 64:97-104. https://doi.org/10.1016/j.bse.2015.11.013   DOI
26 Kim YR, JE Jang, HK Choi and HJ Lee. 2020b. Phylogeographic and population genetic study of a Korean endemic freshwater fish species, Zacco koreanus. Korean J. Environ. Biol. 38:650-657. https://doi.org/10.11626/KJEB.2020.38.4.650   DOI
27 Kim JE and KG An. 2021. Long-term distribution trend analysis of largemouth bass (Micropterus salmoides), based on National Fish Database, and the ecological risk assessments. Korean J. Environ. Biol. 39:207-217. https://doi.org/10.11626/kjeb.2021.39.2.207   DOI
28 Kim SB and DS Kim. 2018. A tentative evaluation for population establishment of Bactrocera dorsalis (Diptera: Tephritidae) by its population modeling: Considering the temporal distribution of host plants in a selected area in Jeju, Korea. J. Asia-Pac. Entomol. 21:451-465. https://doi.org/10.1016/j.aspen.2018.01.022   DOI
29 Kim A, YC Kim and DH Lee. 2020a. Home range and daily activity of nutria (Myocastorcoypus) using radio tracking in South Korea. J. Environ. Impact Assess 29:182-197. https://doi.org/10.14249/eia.2020.29.3.182   DOI
30 Kolar CS and DM Lodge. 2001. Progress in invasion biology: predicting invaders. Trends Ecol. Evol. 16:199-204. https://doi.org/10.1016/s0169-5347(01)02101-2   DOI
31 Kwon DH, SJ Kim, TJ Kang, JH Lee and DH Kim. 2017. Analysis of the molecular phylogenetics and genetic structure of an invasive alien species, Ricania shantungensis, in Korea. J. Aisa Pac. Entomol. 20:901-906. https://doi.org/10.1016/j.aspen.2017.06.008   DOI
32 Kubisch A, RD Holt, HJ Poethke and EA Fronhofer. 2014. Where am I and why? Synthesizing range biology and the eco-evolutionary dynamics of dispersal. Oikos 123:5-22. https://doi.org/10.1111/j.1600-0706.2013.00706.x   DOI
33 Lee CE. 2002. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17:386-391. https://doi.org/10.1016/s0169-5347(02)02554-5   DOI
34 Lamy T, JP Pointier, P Jarne and P David. 2012. Testing metapopulation dynamics using genetic, demographic and ecological data. Mol. Ecol. 21:1394-1410. https://doi.org/10.1111/j.1365-294x.2012.05478.x   DOI
35 Latombe G, S Canavan, H Hirsch, C Hui, S Kumschick, MM Nsikani, LJ Potgieter, TB Robinson, WC Saul, SC Turner, JRU Wilson, FA Yannelli and DM Richardson. 2019. A four-component classification of uncertainties in biological invasions: implications for management. Ecosphere 10:e02669. https://doi.org/10.1002/ecs2.2669   DOI
36 Laugier GJM, G Le Moguedec, W Su, A Tayeh, L Soldati, B Serrate, A Estoup and B Facon. 2016. Reduced population size can induce quick evolution of inbreeding depression in the invasive ladybird Harmonia axyridis. Biol. Invasions 18:2871-2881. https://doi.org/10.1007/s10530-016-1179-1   DOI
37 Lee CS and Y Moh. 2020. A study on the risk assessment system for the harmful marine species: the legal problems and solutions. Korean J. Environ. Biol. 38:691-704. https://doi.org/10.11626/KJEB.2020.38.4.691   DOI
38 Lee KH, JS Jeong, JS Park, MJ Kim, NR Jeong, SY Jeong, GS Lee, W Lee and I Kim. 2021a. Tracing the invasion and expansion characteristics of the flatid planthopper, Metcalfa pruinosa (Hemiptera: Flatidae), in Korea using mitochondrial DNA sequences. Insects 12:4. https://doi.org/10.3390/insects12010004   DOI
39 Lee S, Y Lee and S Lee. 2020. Population genetic structure of Anoplophora glabripennis in South Korea: Invasive populations in the native range? J. Pest Sci. 93:1181-1196. https://doi.org/10.1007/s10340-020-01245-3   DOI
40 Lee WH, JM Jung, HS Lee, JH Lee and S Jung. 2021b. Evaluating the invasion risk of longhorn crazy ants (Paratrechina longicornis) in South Korea using spatial distribution model. J. Asia-Pac. Entomol. 24:279-287. https://doi.org/10.1016/j.aspen.2021.01.007   DOI
41 Lenda M, M Zagalska-Neubauer, G Neubauer and P Skorka. 2010. Do invasive species undergo metapopulation dynamics? A case study of the invasive Caspian gull, Larus cachinnans, in Poland. J. Biogeogr. 37:1824-1834. https://doi.org/10.1111/j.1365-2699.2010.02344.x   DOI
42 Levins R. 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15:237-240. https://doi.org/10.1093/besa/15.3.237   DOI
43 Lodge DM, S Williams, HJ MacIsaac, KR Hayes, B Leung, S Reichard, RN Mack, RB Moyle, M Smith, DA Andow, JT Carlton and A McMichael. 2006. Biological invasions: recommendations for US policy and management. Ecol. Appl. 16:2035-2054. https://doi.org/10.1890/1051-0761(2006)016[2035:birfup]2.0.co;2   DOI
44 MacArthur RH and EO Wilson. 1967. The Theory of Island Biogeography. Princeton University Press. Princeton, NJ.
45 Mackay-Smith A, MK Dornon, R Lucier, A Okimoto, FM de Sousa, M Rodriguero, V Confalonieri, AA Lanteri and AS Sequeira. 2021. Host-specific gene expression as a tool for introduction success in Naupactus parthenogenetic weevils. PLoS One 16:e0248202. https://doi.org/10.1101/2021.02.23.432442   DOI
46 Marchini GL, NC Sherlock, AP Ramakrishnan, DM Rosenthal and MB Cruzan. 2016. Rapid purging of genetic load in a metapopulation and consequences for range expansion in an invasive plant. Biol. Invasions 18:183-196. https://doi.org/10.1007/s10530-015-1001-5   DOI
47 Marsico TD, JW Burt, EK Espeland, GW Gilchrist, MA Jamieson, L Lindstrom, GK Roderick, S Swope, M Szucs and ND Tsutsui. 2010. PERSPECTIVE: Underutilized resources for studying the evolution of invasive species during their introduction, establishment, and lag phases. Evol. Appl. 3:203-219. https://doi.org/10.1111/j.1752-4571.2009.00101.x   DOI
48 Hanski I and M Gilpin. 1991. Metapopulation dynamics: brief history and conceptual domain. Biol. J. Linnean Soc. 42:3-16. https://doi.org/10.1111/j.1095-8312.1991.tb00548.x   DOI
49 Hanski IA and D Simberloff. 1997. The metapopulation approach, its history, conceptual domain, and application to conservation. pp. 5-26. In: Metapopulation Biology (Hanski IA and ME Gilpin, eds.). Academic Press. San Diego, CA. https://doi.org/10.1016/b978-012323445-2/50003-1   DOI
50 Maron JL and M Vila. 2001. When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:361-373. https://doi.org/10.1034/j.1600-0706.2001.950301.x   DOI
51 McCallum H and A Dobson. 2002. Disease, habitat fragmentation and conservation. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 269:2041-2049. https://doi.org/10.1098/rspb.2002.2079   DOI
52 McManus LC, EW Tekwa, DE Schindler, TE Walsworth, MA Colton, MM Webster, TE Essington, DL Forrest, SR Palumbi, PH Mumby and ML Pinsky. 2021. Evolution reverses the effect of network structure on metapopulation persistence. Ecology 102:e03381. https://doi.org/10.1002/ecy.3381   DOI
53 McRae BH. 2006. Isolation by resistance. Evolution 60:1551-1561. https://doi.org/10.1111/j.0014-3820.2006.tb00500.x   DOI
54 Ministry of Environment. 2014. Research of Medium- and LongTerm Management Plan for Alien Species. Ministry of Environment. Sejong, Korea. pp. 3-8.
55 Moore KA and SC Elmendorf. 2006. Propagule vs. niche limitation: untangling the mechanisms behind plant species' distributions. Ecol. Lett. 9:797-804. https://doi.org/10.1111/j.1461-0248.2006.00923.x   DOI
56 Nackley LL, AG West, AL Skowno and WJ Bond. 2017. The nebulous ecology of native invasions. Trends Ecol. Evol. 32:814-824. https://doi.org/10.1016/j.tree.2017.08.003   DOI
57 Hassell MP, HN Comins and RM Mayt. 1991. Spatial structure and chaos in insect population dynamics. Nature 353:255-258. https://doi.org/10.1038/353255a0   DOI
58 Harding KC and JM McNamara. 2002. A unifying framework for metapopulation dynamics. Am. Nat. 160:173-185. https://doi.org/10.1086/341014   DOI
59 Harding KC, JM McNamara and RD Holt. 2006. Understanding invasions in patchy habitats through metapopulation theory. pp. 371-403. In: Conceptual Ecology and Invasion Biology: Reciprocal Approaches to Nature (Cadotte MW, SM Mcmahon and T Fukami, eds.). Springer. Dordrecht, Netherlands. https://doi.org/10.1007/1-4020-4925-0_17   DOI
60 Harrison S. 1991. Local extinction in a metapopulation context: an empirical evaluation. Biol. J. Linnean Soc. 42:73-88. https://doi.org/10.1016/b978-0-12-284120-0.50008-5   DOI
61 Hastings A and S Harrison. 1994. Metapopulation dynamics and genetics. Annu. Rev. Ecol. Evol. Syst. 25:167-188. https://doi.org/10.1146/annurev.es.25.110194.001123   DOI
62 Hayes KR and SC Barry. 2008. Are there any consistent predictors of invasion success? Biol. Invasions 10:483-506. https://doi.org/10.1007/s10530-007-9146-5   DOI
63 Heger T, WC Saul and L Trepl. 2013. What biological invasions 'are' is a matter of perspective. J. Nat. Conserv. 21:93-96. https://doi.org/10.1016/j.jnc.2012.11.002   DOI
64 Hendry AP. 2018. A critique for eco-evolutionary dynamics. Funct. Ecol. 33:84-94. https://doi.org/10.1111/1365-2435.13244   DOI
65 Huey RB, GW Gilchrist and AP Hendry. 2005. Using invasive species to study evolution. pp. 139-164. In: Species Invasions: Insights into Ecology, Evolution, and Biogeography (Sax DF, JJ Stachowicz and SD Gaines, eds.). Sinauer Sunderland. Sunderland, MA.
66 Noda T and M Ohira. 2020. Transition in population dynamics of the intertidal barnacle Balanus glandula after invasion: causes and consequences of change in larval supply. J. Mar. Sci. Eng. 8:915. https://doi.org/10.3390/jmse8110915   DOI
67 Nakazawa T. 2015. Introducing stage-specific spatial distribution into the Levins metapopulation model. Sci. Rep. 5:1-7. https://doi.org/10.1038/srep07871   DOI
68 National Institute of Ecology. 2020a. Nationwide Survey of Non-Native Species in Korea (2020). National Institute of Ecology. Seocheon, Korea.
69 National Institute of Ecology. 2020b. Investigating Ecological Risk of Alien Species (2020). National Institute of Ecology. Seocheon, Korea.
70 Nosil P, SM Flaxman, JL Feder and Z Gompert. 2020. Increasing our ability to predict contemporary evolution. Nat. Commun. 11:1-6. https://doi.org/10.1038/s41467-020-19437-x   DOI
71 Olivieri I, D Couvet and PH Gouyon. 1990. The genetics of transient populations: research at the metapopulation level. Trends Ecol. Evol. 5:207-210. https://doi.org/10.1016/0169-5347(90)90132-w   DOI
72 Pannell JR and DJ Obbard. 2003. Probing the primacy of the patch: what makes a metapopulation? J. Ecol. 91:485-488. https://doi.org/10.1046/j.1365-2745.2003.00784.x   DOI
73 Park CG, S Min, GS Lee, S Kim, Y Lee, S Lee, KJ Hong, SW Wilson, SI Akimoto and W Lee. 2016a. Genetic variability of the invasive species Metcalfa pruinosa (Hemiptera: Flatidae) in the Republic of Korea. J. Econ. Entomol. 109:1897-1906. https://doi.org/10.1093/jee/tow097   DOI
74 Park M, KS Kim and JH Lee. 2013. Genetic structure of Lycorma delicatula (Hemiptera: Fulgoridae) populations in Korea: implication for invasion processes in heterogeneous landscapes. Bull. Entomol. Res. 103:414-424. https://doi.org/10.1017/s0007485313000011   DOI
75 Inman RM, BL Brock, KH Inman, SS Sartorius, BC Aber, B Giddings, SL Cain, ML Orme, JA Fredrick, BJ Oakleaf, KL Alt, E Odell and G Chapron. 2013. Developing priorities for metapopulation conservation at the landscape scale: wolverines in the western United States. Biol. Conserv. 166:276-286. https://doi.org/10.1016/j.biocon.2013.07.010   DOI
76 Hufbauer RA. 2008. Biological invasions: paradox lost and paradise gained. Curr. Biol. 18:R246-R247. https://doi.org/10.1016/j.cub.2008.01.038   DOI
77 Hufbauer RA, B Facon, V Ravigne, J Turgeon, J Foucaud, CE Lee, O Rey and A Estoup. 2012. Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to humanaltered habitats within the native range can promote invasions. Evol. Appl. 5:89-101. https://doi.org/10.1111/j.1752-4571.2011.00211.x   DOI
78 Hufbauer RA, M Szucs, E Kasyon, C Youngberg, MJ Koontz, C Richards, T Tuff and BA Melbourne. 2015. Three types of rescue can avert extinction in a changing environment. Proc. Natl. Acad. Sci. U. S. A. 112:10557-10562. https://doi.org/10.1073/pnas.1504732112   DOI
79 IUCN. 2018. Invasive Alien Species and Sustainable Development. International Union for Conservation of Nature. Gland, Switzerland. Retrieved January 26, 2018, from https://www.iucn.org/resources/issues-briefs/invasive-alien-species-and-sustainable-development.
80 Ives AR and WH Settle. 1997. Metapopulation dynamics and pest control in agricultural systems. Am. Nat. 149:220-246. https://doi.org/10.1086/285988   DOI
81 Jeong IH, B Park, GS Lee, Q Wu, F Li, Z Zhang and Y Zhu. 2020. Comparison of B and Q biotype distribution, insecticidal mortality, and TYLCV viruliferous rate between Korean and Chinese local populations of Bemisia tabaci. Korean J. Environ. Biol. 38:616-624. https://doi.org/10.11626/kjeb.2020.38.4.616   DOI
82 Pelletier F, D Garant and AP Hendry. 2009. Eco-evolutionary dynamics. Philos. Trans. R. Soc. B-Biol. Sci. 364:1483-1489. https://doi.org/10.1098/rstb.2009.0027   DOI
83 Park T, H Jang, S Eom, K Son and JJ Park. 2022. Analysis and estimation of species distribution of Mythimna seperata and Cnaphalocrocis medinalis with land-cover data under climate change scenario using MaxEnt. Korean J. Environ. Biol. 40:214-223. https://doi.org/10.11626/kjeb.2022.40.2.214   DOI
84 Park YH, J Kim and H Jung. 2016b. Climate change and ecosystem-based management strategies of invasive alien species. J. Environ. Policy Adm. 24:149-176. https://doi.org/10.15301/jepa.2016.24.4.149   DOI
85 Parry H, R Sadler and D Kriticos. 2013. Practical guidelines for modelling post-entry spread in invasion ecology. NeoBiota 18:41-66. https://doi.org/10.3897/neobiota.18.4305   DOI
86 Pergl J, P Pysek, I Perglova and V Jarosik. 2012. Low persistence of a monocarpic invasive plant in historical sites biases our perception of its actual distribution. J. Biogeogr. 39:1293-1302. https://doi.org/10.1111/j.1365-2699.2011.02677.x   DOI
87 Petranka JW. 2007. Evolution of complex life cycles of amphibians: bridging the gap between metapopulation dynamics and life history evolution. Evol. Ecol. 21:751-764. https://doi.org/10.1007/s10682-006-9149-1   DOI
88 Pichlmueller F and JC Russell. 2018. Survivors or reinvaders? Intraspecific priority effect masks reinvasion potential. Biol. Conserv. 227:213-218. https://doi.org/10.1016/j.biocon.2018.09.020   DOI
89 Richardson DM, N Allsopp, CM D'antonio, SJ Milton and M Rejmanek. 2000a. Plant invasions - the role of mutualisms. Biol. Rev. 75:65-93. https://doi.org/10.1111/j.1469-185x.1999.tb00041.x   DOI
90 Adke SR and JE Moyal. 1963. A birth, death, and diffusion process. J. Math. Anal. Appl. 7:209-224. https://doi.org/10.1016/0022-247X(63)90048-9   DOI
91 Baguette M. 2004. The classical metapopulation theory and the real, natural world: a critical appraisal. Basic Appl. Ecol. 5:213-224. https://doi.org/10.1016/j.baae.2004.03.001   DOI
92 Banks PB, AE Byrom, RP Pech and CR Dickman. 2018. Reinvasion is not invasion again. BioScience 68:792-804. https://doi.org/10.1093/biosci/biy076   DOI
93 Barrett SC. 2015. Foundations of invasion genetics: the Baker and Stebbins legacy. Mol. Ecol. 24:1927-1941. https://doi.org/10.1111/mec.13014   DOI
94 Blackburn TM, P Pysek, S Bacher, JT Carlton, RP Duncan, V Jarosik, JRU Wilson and DM Richardson. 2011. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26:333-339. https://doi.org/10.1016/j.tree.2011.03.023   DOI
95 Bonte D and Q Bafort. 2018. The importance and adaptive value of life-history evolution for metapopulation dynamics. J. Anim. Ecol. 88:24-34. https://doi.org/10.1111/1365-2656.12928   DOI
96 Byeon DH, S Jung and WH Lee. 2018. Review of CLIMEX and MaxEnt for studying species distribution in South Korea. J. Asia-Pac. Biodivers. 11:325-333. https://doi.org/10.1016/j.japb.2018.06.002   DOI
97 Byeon SY, HJ Oh, S Kim, SH Yun, JH Kang, SR Park and HJ Lee. 2019. The origin and population genetic structure of the 'golden tide' seaweeds, Sargassum horneri, in Korean waters. Sci. Rep. 9:1-13. https://doi.org/10.1038/s41598-019-44170-x   DOI
98 Byers JE, WG McDowell, SR Dodd, RS Haynie, LM Pintor and SB Wilde. 2013. Climate and pH predict the potential range of the invasive apple snail (Pomacea insularum) in the southeastern United States. PLoS One 8:e56812. https://doi.org/10.1371/journal.pone.0056812   DOI
99 Richardson DM, P Pysek, M Rejmanek, MG Barbour, FD Panetta and CJ West. 2000b. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6:93-107. https://doi.org/10.1046/j.1472-4642.2000.00083.x   DOI
100 Richardson DM, P Pysek and JT Carlton. 2010. A compendium of essential concepts and terminology in invasion ecology. pp. 409-420. In: Fifty Years of Invasion Ecology (Richardson DM, ed.). Blackwell Publishing. Hoboken, NJ. https://doi.org/10.1002/9781444329988.ch30   DOI
101 Roman J and JA Darling. 2007. Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol. Evol. 22:454-464. https://doi.org/10.1016/j.tree.2007.07.002   DOI
102 Roura-Pascual N, L Brotons, AT Peterson and W Thuiller. 2009. Consensual predictions of potential distributional areas for invasive species: a case study of Argentine ants in the Iberian Peninsula. Biol. Invasions 11: 1017-1031. https://doi.org/10.1007/s10530-008-9313-3   DOI
103 Ruesink JL, IM Parker, MJ Groom and PM Kareiva. 1995. Reducing the risks of nonindigenous species introductions. BioScience 45:465-477. https://doi.org/10.2307/1312790   DOI
104 Russell JC, SD Miller, GA Harper, HE Maclnnes, MJ Wylie and RM Fewster. 2010. Survivors or reinvaders? Using genetic assignment to identify invasive pests following eradication. Biol. Invasions 12:1747-1757. https://doi.org/10.1007/s10530-009-9586-1   DOI
105 Ryoo M and JH Lee. 2002. Population Ecology. Seoul National University Press. Seoul. 
106 Secretariat of the Convention on Biological Diversity. 2020. Global Biodiversity Outlook 5. Montreal, Canada.
107 Drake JM. 2004. Allee effects and the risk of biological invasion. Risk Anal. 24:795-802. https://doi.org/10.1111/j.0272-4332.2004.00479.x   DOI
108 Callaway RM and WM Ridenour. 2004. Novel weapons: invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2:436-443. https://doi.org/10.1890/1540-9295(2004)002[0436:nwisat]2.0.co;2   DOI
109 Dlugosch KM and IM Parker. 2008. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17:431-449. https://doi.org/10.1111/j.1365-294x.2007.03538.x   DOI
110 Dormann CF. 2007. Promising the future? Global change projections of species distributions. Basic Appl. Ecol. 8:387-397. https://doi.org/10.1016/j.baae.2006.11.001   DOI
111 Carriere Y, DW Crowder and BE Tabashnik. 2010. Evolutionary ecology of insect adaptation to Bt crops. Evol. Appl. 3:561-573. https://doi.org/10.1111/j.1752-4571.2010.00129.x   DOI
112 Catford JA, R Jansson and C Nilsson. 2009. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15:22-40. https://doi.org/10.1111/j.1472-4642.2008.00521.x   DOI
113 Catlin DH, SL Zeigler, MB Brown, LR Dinan, JD Fraser, KL Hunt and JG Jorgensen. 2016. Metapopulation viability of an endangered shorebird depends on dispersal and human-created habitats: piping plovers (Charadrius melodus) and prairie rivers. Mov. Ecol. 4:1-15. https://doi.org/10.1186/s40462-016-0072-y   DOI
114 CBD. 2022. Invasive Alien Species. Convention on Biological Diversity. UN Environment Programme. Retrieved January 8, 2022, from https://www.cbd.int/invasive/.
115 Skellam JG. 1951. Random dispersal in theoretical populations. Biometrika 38:196-218. https://doi.org/10.2307/2332328   DOI
116 Seebens H, E Briski, S Ghabooli, T Shiganova, HJ MacIsaac and B Blasius. 2019. Non-native species spread in a complex network: the interaction of global transport and local population dynamics determines invasion success. Proc. R. Soc. B-Biol. Sci. 286:20190036. https://doi.org/10.1098/rspb.2019.0036   DOI
117 Signorile AL, J Wang, PWW Lurz, S Bertolino, C Carbone and DC Reuman. 2014. Do founder size, genetic diversity and structure influence rates of expansion of North American grey squirrels in Europe? Divers. Distrib. 20:918-930. https://doi.org/10.1111/ddi.12222   DOI
118 Simberloff D. 2009. The role of propagule pressure in biological invasions. Annu. Rev. Ecol. Evol. Syst. 40:81-102.   DOI
119 Smedbol RK, A McPherson, MM Hansen and E Kenchington. 2002. Myths and moderation in marine 'metapopulations'? Fish. Fish. 3:20-35. https://doi.org/10.1046/j.1467-2979.2002.00062.x   DOI
120 Chapman DS, L Makra, R Albertini, M Bonini, A Paldy, V Rodinkova, B Sikoparija, E Weryszko-Chmielewska and JM Bullock. 2016. Modelling the introduction and spread of non-native species: International trade and climate change drive ragweed invasion. Glob. Change Biol. 22:3067-3079. https://doi.org/10.1111/gcb.13220   DOI
121 Choi DS, JS Park, MJ Kim, JS Kim, SY Jeong, JS Jeong, J Park and I Kim. 2018. Geographic variation in the spotted-wing drosophila, Drosophila suzukii (Diptera: Drosophilidae), based on mitochondrial DNA sequences. Mitochondrial DNA Part A 29:312-322. https://doi.org/10.1080/24701394.2016.1278534   DOI
122 Choi HS, SY Jeong, KH Lee, JS Jeong, JS Park, NR Jeong, MJ Kim, W Lee and I Kim. 2021. Population genetic analysis of Salurnis marginella (Hemiptera: Flatidae). Int. J. Indust. Entomol. 43:67-77. https://doi.org/10.7852/ijie.2021.43.2.67   DOI
123 Choi KH. 2009. Risk assessment of ballast water-mediated invasions of phytoplankton: a modeling study. Ocean Sci. J. 44:221-226. https://doi.org/10.1007/s12601-009-0021-4   DOI
124 Drake JM and DM Lodge. 2006. Allee effects, propagule pressure and the probability of establishment: risk analysis for biological invasions. Biol. Invasions 8:365-375. https://doi.org/10.1007/s10530-004-8122-6   DOI
125 Dubart M, JH Pantel, JP Pointier, P Jarne and P David. 2019. Modeling competition, niche, and coexistence between an invasive and a native species in a two-species metapopulation. Ecology 100:e02700. https://doi.org/10.1002/ecy.2700   DOI
126 Duncan RP, TM Blackburn and D Sol. 2003. The ecology of bird introductions. Annu. Rev. Ecol. Evol. Syst. 34:71-98. https://doi.org/10.1146/annurev.ecolsys.34.011802.132353   DOI
127 Facon B, P Jarne, JP Pointier and P David. 2005. Hybridization and invasiveness in the freshwater snail Melanoides tuberculate: hybrid vigour is more important than increase in genetic variance. J. Evol. Biol. 18:524-535. https://doi.org/10.1111/j.1420-9101.2005.00887.x   DOI
128 Elith J and JR Leathwick. 2009. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40:677-697. https://doi.org/10.1146/annurev.ecolsys.110308.120159   DOI
129 Estoup A, V Ravigne, R Hufbauer, R Vitalis, M Gautier and B Facon. 2016. Is there a genetic paradox of biological invasion? Annu. Rev. Ecol. Evol. Syst. 47:51-72. https://doi.org/10.1146/annurev-ecolsys-121415-032116   DOI
130 Facon B, RA Hufbauer, A Tayeh, A Loiseau, E Lombaert, R Vitalis, T Guillemaud, JG Lundgren and A Estoup. 2011. Inbreeding depression is purged in the invasive insect Harmonia axyridis. Curr. Biol. 21:424-427. https://doi.org/10.1016/j.cub.2011.01.068   DOI
131 Facon B, JP Pointier, P Jarne, V Sarda and P David. 2008. High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Curr. Biol. 18:363-367. https://doi.org/10.1016/j.cub.2008.01.063   DOI
132 Fountain T, L Duvaux, G Horsburgh, K Reinhardt and RK Butlin. 2014. Human-facilitated metapopulation dynamics in an emerging pest species, Cimex lectularius. Mol. Ecol. 23:1071-1084. https://doi.org/10.1111/mec.12673   DOI
133 Choi MB, SA Lee, HY Suk and JW Lee. 2013. Microsatellite variation in colonizing populations of yellow-legged Asian hornet, Vespa velutina nigrithorax, in South Korea. Entomol. Res. 43:208-214. https://doi.org/10.1111/1748-5967.12027   DOI
134 Coutts SR, KJ Helmstedt and JR Bennett. 2018. Invasion lags: The stories we tell ourselves and our inability to infer process from pattern. Divers. Distrib. 24:244-251. https://doi.org/10.1111/ddi.12669   DOI
135 Chun YJ, B Fumanal, B Laitung and F Bretagnolle. 2010. Gene flow and population admixture as the primary post-invasion processes in common ragweed (Ambrosia artemisiifolia) populations in France. New Phytol. 185:1100-1107. https://doi.org/10.1111/j.1469-8137.2009.03129.x   DOI
136 Colautti RI and DM Richardson. 2009. Subjectivity and flexibility in invasion terminology: too much of a good thing? Biol. Invasions 11:1225-1229. https://doi.org/10.1007/s10530-008-9333-z   DOI
137 Colautti RI, JM Alexander, KM Dlugosch, SR Keller and SE Sultan. 2017. Invasions and extinctions through the looking glass of evolutionary ecology. Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 372:20160031. https://doi.org/10.1098/rstb.2016.0031   DOI
138 Crooks JA. 2005. Lag times and exotic species: The ecology and management of biological invasions in slow-motion1. Ecoscience 12:316-329. https://doi.org/10.2980/i1195-6860-12-3-316.1   DOI
139 Davidson AM, M Jennions and AB Nicotra. 2011. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol. Lett. 14:419-431. https://doi.org/10.1111/j.1461-0248.2011.01596.x   DOI
140 den Boer PJ. 1986. The present status of the competitive exclusion principle. Trends Ecol. Evol. 1:25-28. https://doi.org/10.1016/0169-5347(86)90064-9   DOI
141 Detwiler JT and CD Criscione. 2014. Recently introduced invasive geckos quickly reach population genetic equilibrium dynamics. Biol. Invasions 16:2653-2667. https://doi.org/10.1007/s10530-014-0694-1   DOI
142 Glemin S. 2003. How are deleterious mutations purged? Drift versus nonrandom mating. Evolution 57:2678-2687. https://doi.org/10.1111/j.0014-3820.2003.tb01512.x   DOI
143 Freckleton RP and AR Watkinson. 2002. Large-scale spatial dynamics of plants: metapopulations, regional ensembles and patchy populations. J. Ecol. 90:419-434. https://doi.org/10.1046/j.1365-2745.2002.00692.x   DOI
144 Fronhofer EA, A Kubisch, FM Hilker, T Hovestadt and HJ Poethke. 2012. Why are metapopulations so rare? Ecology 93:1967-1978. https://doi.org/10.1890/11-1814.1   DOI
145 Gertzen EL, B Leung and ND Yan. 2011. Propagule pressure, Allee effects and the probability of establishment of an invasive species (Bythotrephes longimanus). Ecosphere 2:1-17. https://doi.org/10.1890/es10-00170.1   DOI
146 Gould SJ and ES Vrba. 1982. Exaptation - a missing term in the science of form. Paleobiology 8:4-15. https://doi.org/10.1017/s0094837300004310   DOI
147 Guiney MS, DA Andow and TT Wilder. 2010. Metapopulation structure and dynamics of an endangered butterfly. Basic Appl. Ecol. 11:354-362. https://doi.org/10.1016/j.baae.2009.09.006   DOI
148 Guisan A and W Thuiller. 2005. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8:993-1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x   DOI
149 Hahn MA and LH Rieseberg. 2017. Genetic admixture and heterosis may enhance the invasiveness of common ragweed. Evol. Appl. 10:241-250. https://doi.org/10.1111/eva.12445   DOI
150 Han JE, BH Choi and M Kwak. 2018. Genetic diversity and population structure of endangered Neofinetia falcata (Orchidaceae) in South Korea based on microsatellite analysis. J. Species Res. 7:354-362. https://doi.org/10.12651/JSR.2018.7.4.354   DOI
151 Smith MA and DM Green. 2005. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110128. https://doi.org/10.1111/j.0906-7590.2005.04042.x   DOI
152 Hanski I. 1997. Metapopulation dynamics: from concepts and observations to predictive models. pp. 69-91. In: Metapopulation Biology (Hanski IA and ME Gilpin, eds.). Academic Press. San Diego, CA. https://doi.org/10.1016/b978-012323445-2/50007-9   DOI
153 Hanski I. 1998. Metapopulation dynamics. Nature 396:41-49. https://doi.org/10.1038/23876   DOI
154 Jeong JS, MJ Kim, JS Park, KH Lee, YH Jo, JI Takahashi, YS Choi and I Kim. 2021. Tracing the invasion characteristics of the yellow-legged hornet, Vespa velutina nigrithorax (Hymenoptera: Vespidae), in Korea using newly detected variable mitochondrial DNA sequences. J. Asia-Pac. Entomol. 24:135-147. https://doi.org/10.1016/j.aspen.2021.03.004   DOI
155 Szacki J. 1999. Spatially structured populations: how much do they match the classic metapopulation concept? Landsc. Ecol. 14:369-379. https://doi.org/10.1023/A:1008058208370   DOI
156 Tamburello N, BO Ma and IM Cote. 2019. From individual movement behaviour to landscape-scale invasion dynamics and management: a case study of lionfish metapopulations. Philos. Trans. R. Soc. B-Biol. Sci. 374:20180057. https://doi.org/10.1098/rstb.2018.0057   DOI
157 The Government of the Republic of Korea. 2019. Second Management Plan for Alien Species. Sejong, Korea.
158 Theoharides KA and JS Dukes. 2007. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol. 176:256-273. https://doi.org/10.1111/j.1469-8137.2007.02207.x   DOI