Browse > Article
http://dx.doi.org/10.7850/jkso.2014.19.1.66

Environmentally Associated Spatial Distribution of a Macrozoobenthic Community in the Continental Shelf off the Southern Area of the East Sea, Korea  

Lee, Jung-Ho (Department of Marine Biotechnology, Anyang University)
Lee, Jung-Suk (Institute of Environmental Protection and Safety, NeoEnbiz Co.)
Park, Young-Gyu (Ocean Circulation and Climate Research Division, Korea Institute of Ocean Science and Technology)
Kang, Seong-Gil (Offshore CCS Research Unit, KRISO, Korea Institute of Ocean Science and Technology)
Choi, Tae Seob (Institute of Environmental Protection and Safety, NeoEnbiz Co.)
Gim, Byeong-Mo (Institute of Environmental Protection and Safety, NeoEnbiz Co.)
Ryu, Jongseong (Department of Marine Biotechnology, Anyang University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.19, no.1, 2014 , pp. 66-75 More about this Journal
Abstract
This study aims to understand environmental factors that determine spatial distribution of macrozoobenthic community in the southern area (ca 100-500 m depth) of East Sea, Korea, known as a candidate site for carbon storage under the seabed. From sixteen locations sampled in the summer of 2012, a total of 158 species were identified, showing density of $843indiv/m^2$ and biomass of $26.2g\;WW/m^2$, with increasing faunal density towards biologically higher diverse locations. Principal component analysis showed that a total of 33 environmental parameters were reduced to three principal components (PC), indicating sediment, bottom water, and depth, respectively. As sand content was increasing, number of species increased but biomass decreased. Six dominant species including two bivalve species favored high concentrations of ${\Omega}$ aragonite and ${\Omega}$ calcite, indicating that the corresponding species can be severely damaged by ocean acidification or $CO_2$ effluent. Cluaster analysis based on more than 1% density dominant species classified the entire study area into four faunal assemblage (location groups), which were delineated by characteristic species, including (A) Ampelisca miharaensis, (B) Edwardsioides japonica, (C) Maldane cristata, (D) Spiophanes kroeyeri, and clearly separated in terms of geography, bottom water and sediment environment. Overall, a discriminant function model was developed to predict four faunal assemblages from five simply-measured environmental variables (depth, sand content in sediment, temperature, salinity and pH in bottom water) with 100% accuracy, implying that benthic faunal assemablages are closed linked to certain combinations of abiotic factors.
Keywords
Zoobenthos; Community composition; Multivariate analysis; Ecological model;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Choi, J.-W., C.-H. Koh, 1986. The distribution and feeding characteristics of some dominant polychaetes in the continental shelf of the East Sea, Korea. J. Oceanol. Soc. Korea, 21: 236−244.   과학기술학회마을
2 Ahn, I.Y., Y.C. Kang, J.W. Choi, 1995. The influences of industrial effluents on intertidal benthic communities in Panweol, Kyeonggi Bay (Yellow Sea) on the coast of Korea. Mar. Pollut. Bull., 30:200−206.   DOI   ScienceOn
3 Buchanan, J.B., 1984. Sediment analysis. In: Methods for the study of marine benthos, edited by Holme, N.A. and A.D. McIntyre, Blackwell Scientific Publications, Oxford and Edinburgh, pp. 41−65.
4 Blanchet, H., N. Lavesque, T. Ruellet, J.C. Dauvin, P.G. Sauriau, N. Desroy, C. Desclaux, M. Leconte, G. Bachelet, A.-L. Janson, C. Bessineton, S. Duhamel, J. Jourde, S. Mayot, S. Simon, X. de Montaudouin, 2008. Use of biotic indices in semi-enclosed coastal ecosystems and transitional waters habitats-implications for the implementation of the European Water Frame work Directive. Ecol. Indicators, 8: 360−372.   DOI
5 Choi, J.-W., C.-H. Koh, 1988. The Polychaete assemblages on the continental shelf off the southeastern coast of Korea. J. Oceanol. Soc. Korea, 23: 169−183.   과학기술학회마을
6 Choi, J.-W., C.-H. Koh, 1989. Polychaete feeding guilds from the continental shelf off the southeastern coast of Korea. J. Oceanol. Soc. Korea, 24: 84−95.   과학기술학회마을
7 Choi, J.-W., C.-H. Koh, 1990. Distiribution pattern of polychaete worms on the continental shelf and slope of the East Sea (Southwestern Sea of Japan), Korea. J. Oceanol. Soc. Korea, 25: 36−48.
8 Dove, M.C., J. Sammut, 2007. Impacts of estuarine acidification on survival and growth of Sydney rock oysters Saccostrea glomerata. J. Shell. Res., 26: 519−527.   DOI
9 Choi, J.-W., S. Hyun, D. Kim, W.-S. Kim, 2002. Macrobenthic faunal assemblages on the soft-bottoms around Dokdo in the East Sea, Korea. Ocean Polar Res., 24: 429−442.   과학기술학회마을   DOI
10 Clarke, K.R., R.M. Gorley, 2006. PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth.
11 Doney, S.C., V.J. Fabry, R.A. Feely, J.A. Kleypas, 2009. Ocean acidification: the other $CO_2$ problem. Annu. Rev. Mar. Sci., 1: 169−192.   DOI
12 Ellis, J., T. Ysebaert, T. Hume, A. Norkko, T. Bult, P. Herman, S. Thrush, J. Oldman, 2006. Predicting macrofaunal species distributions in estuarine gradients using logistic regression and classification systems. Mar. Ecol. Prog. Ser., 316: 69−83.   DOI
13 Field, J.G., K.R. Clarke, R.M. Warwick, 1982. A practical strategy for analyzing multispecies distribution patterns. Mar. Ecol. Prog. Ser., 8: 37−52.   DOI
14 Gray, J.S., 1974. Animal-sediment relationships. Oceanogr. Mar. Biol. Ann. Rev., 12: 223−262.
15 Messiner, K., A. Darr, E. Rachor, 2008. Development of habitat models for Nephtys species (Polychaeta: Nephtyidae) in the German Bight. J. Sea Res., 60: 276−291.   DOI
16 Green, M.A., G.G. Waldbusser, S.L. Reilly, K. Emerson, S. O'Donnell, 2009. Death by dissolution: sediment saturation state as a mortality factor for juvenile bivalves. Limnol. Oceangr., 54: 1037−1047.   DOI
17 Kelly, R.P., M.M. Foley, W.S. Fisher, R.A. Feely, B.S. Halpern, G.G. Waldbusser, M.R. Caldwell, 2011. Mitigating local causes of ocean acidification with existing laws. Science, 332: 1036−1037.   DOI
18 Paik, S.-G., R.-S. Kang, J.O. Jeon, J.-H. Lee, S.G. Yun, 2007. Distribution patterns of sandy bottom macrobenthic community on the Hupo coastal area, in the East Sea of Korea. Ocean Polar Res., 23: 123−134.
19 Lim, H.-S., J.-W. Choi, S.-D. Choi, 2012. Spatial distribution of macrobenthos in Sueocheon stream estuary at the northern part of Gwangyang Bay, Korea. The Sea (J. Kor. Soc. Oceanogr.), 17:76−86.
20 Miller, A.W., A.C. Reynolds, C. Sorbino, G.F. Riedel, 2009. Shellfish face uncertain future in high $CO_2$ world: influence of acidification on oyster larvae calcification and growth in estuaries. PLoS Biology, 4: e5661.
21 Paul, J., K.J. Scott, D.E. Campbell, J.H. Gentile, C.S. Strobel, R.M. Valente, S.B. Weisberg, A.F. Holland, J.A., Ranasinghe, 2001. Developing and applying a benthic index of estuarine condition for the Virginian Biogeographic Province. Ecol. Indicators, 1: 83−99.   DOI
22 Ryu, J., J.S. Khim, S.-G. Kang, D. Kang, C.-H. Lee, C.-H. Koh, 2011a. The impact of heavy metal pollution gradients in sediments on benthic macrofauna at population and community levels. Environ. Pollut., 159: 2622−2629.   DOI
23 Pearson, T.H., R. Rosenberg, 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Ann. Rev., 16: 229−311.
24 Rakocinski, C.F., S.S. Brown, G.R. Gaston, R.W. Heard, W.W. Walker, J.K. Summers, 2000. Species-abundance-biomass responses by estuarine macrobenthos to sediment chemical contamination. J Aqua. Ecosyst. Stress Recov., 7: 201−214.   DOI
25 Reiss, H., I. Kroncke, 2005. Seasonal variability of benthic indices: an approach to test the applicability of different indices for ecosystem quality assessment. Mar. Pollut. Bull., 50: 1490−1499.   DOI
26 Shin, H.C., S.M. Yoon, C.H. Koh, 2001. Spatial distribution of benthic macrofaunal community in Ulsan Bay and Onsan Bay, eastern coast of Korea. J. Kor. Soc. Oceaogr., 6: 180−189.   과학기술학회마을
27 Ryu, J., H.-C. Kim, J.S. Khim, Y.H. Kim, J. Park, D. Kang, J.H. Hwang, C.-H. Lee, C.-H. Koh, 2011b. Prediction of macrozoobenthic species distribution in the Korean Saemangeum tidal flat based on a logistic regression model of environmental parameters. Ecol. Res., 26: 659−668.   DOI
28 Ryu, J., J.S. Khim, J.-W. Choi, H.C. Shin, S. An, J. Park, D. Kang, C.-H. Lee, C.-H. Koh, 2011c. Environmentally associated spatial changes of a macrozoobenthic community in the Saemangeum tidal flat, Korea. J. Sea Res., 65: 390−400.   DOI
29 Salzwedel, H, E. Rachor, D. Gerdes, 1985. Benthic macrofauna communities in the German Bight. Veroff. Inst. Meeresforsch. Bremerh., 20: 199−267.
30 Thrush, S.F., J.E. Hewitt, A. Norkko, P.E. Nicholls, G.A. Funnell, J.I. Ellis, 2003. Habitat change in estuaries: predicting broad-scale responses of intertidal macrofauna to sediment mud content. Mar. Ecol. Prog. Ser., 263: 101−112.   DOI
31 Simboura, N., A. Zenetos, P. Panayotidis, A. Makra, 1995. Changes of benthic community structure along an environmental gradient. Mar. Pollut. Bull., 30: 470−474.   DOI   ScienceOn
32 Somerfield, P.J., J.M. Gee, R.M. Warwick, 1994. Benthic community structure in relation to an instantaneous discharge of waste water from a tin mine. Mar. Pollut. Bull., 28: 363−369.   DOI   ScienceOn
33 Snelgrove, P.R.V., C.A. Butman, 1994. Animal-sediment relationships revisited: cause versus effect. Oceanogr. Mar. Biol. Ann. Rev., 32: 111−177.
34 Ysebaert, T., P. Meire, P.M. Herman, H. Verbeek, 2002. Macrobenthic species response surfaces along estuarine gradients: prediction by logistic regression. Mar. Ecol. Prog. Ser., 225: 79−95.   DOI
35 Warwick, R.M., H.M. Platt, K.R. Clarke, J. Agard, J. Gobin, 1990. Analysis of macrobenthic and meiobenthic community structure in relation to pollution and disturbance in Hamilton Harbor, Bermuda. J. Exp. Mar. Biol. Ecol., 139: 119−142.   DOI
36 Weston, D.P., 1988. Macrobenthos-sediment relationships on the continental shelf off Cape Hatteras, North Carolina. Cont. Shelf Res., 8: 267−286.   DOI   ScienceOn
37 Weston, D.P., 1990. Quantitative examination of macrobenthic community changes along an organic enrichment gradient. Mar. Ecol. Prog. Ser., 61: 233−244.   DOI
38 Zar, J.H., 1984. Biostatistical analysis. Prentice-Hall, Englewood Cliffs, New Jersey.
39 Muxika, I., A. Borja, J. Bald, 2007. Using historical data, expert judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive. Mar. Pollut. Bull., 55: 16−29.   DOI
40 Gogina, M., M. Glockzin, M.L. Zettler, 2010. Distribution of benthic macrofaunal communities in the western Baltic Sea with regard to near-bottom environmental parameters. 2. Modelling and prediction. J. Mar. Syst., 80: 57−70.   DOI
41 Waldbusser, G.G., E.R. Voigt, H. Bergschneider, M.A. Green, R.I.E. Newell, 2011. Biocalcification in the eastern oyster (Crassostrea virginica) in relation to long-term trends in Chesapeake Bay pH. Estuaries Coasts, 34: 221−231.   DOI