• Title/Summary/Keyword: Solvability

Search Result 113, Processing Time 0.022 seconds

SOLVABILITY FOR THE PARABOLIC PROBLEM WITH JUMPING NONLINEARITY CROSSING NO EIGENVALUES

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.4
    • /
    • pp.545-551
    • /
    • 2008
  • We investigate the multiple solutions for a parabolic boundary value problem with jumping nonlinearity crossing no eigenvalues. We show the existence of the unique solution of the parabolic problem with Dirichlet boundary condition and periodic condition when jumping nonlinearity does not cross eigenvalues of the Laplace operator $-{\Delta}$. We prove this result by investigating the Lipschitz constant of the inverse compact operator of $D_t-{\Delta}$ and applying the contraction mapping principle.

  • PDF

STRONGLY CLEAN MATRIX RINGS OVER NONCOMMUTATIVE LOCAL RINGS

  • Li, Bingjun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.71-78
    • /
    • 2009
  • An element of a ring R with identity is called strongly clean if it is the sum of an idempotent and a unit that commute, and R is called strongly clean if every element of R is strongly clean. Let R be a noncommutative local ring, a criterion in terms of solvability of a simple quadratic equation in R is obtained for $M_2$(R) to be strongly clean.

ON THE SOLVABILITY OF A FINITE GROUP BY THE SUM OF SUBGROUP ORDERS

  • Tarnauceanu, Marius
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1475-1479
    • /
    • 2020
  • Let G be a finite group and ${\sigma}_1(G)={\frac{1}{{\mid}G{\mid}}}\;{\sum}_{H{\leq}G}\;{\mid}H{\mid}$. Under some restrictions on the number of conjugacy classes of (non-normal) maximal subgroups of G, we prove that if ${\sigma}_1(G)<{\frac{117}{20}}$, then G is solvable. This partially solves an open problem posed in [9].

Approximation Solvability for a System of Nonlinear Variational Type Inclusions in Banach Spaces

  • Salahuddin, Salahuddin
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.101-123
    • /
    • 2019
  • In this paper, we consider a system of nonlinear variational type inclusions involving ($H,{\varphi},{\eta}$)-monotone operators in real Banach spaces. Further, we define a proximal operator associated with an ($H,{\varphi},{\eta}$)-monotone operator and show that it is single valued and Lipschitz continuous. Using proximal point operator techniques, we prove the existence and uniqueness of a solution and suggest an iterative algorithm for the system of nonlinear variational type inclusions. Furthermore, we discuss the convergence of the iterative sequences generated by the algorithms.

SOLVABILITY OF SYLVESTER OPERATOR EQUATION WITH BOUNDED SUBNORMAL OPERATORS IN HILBERT SPACES

  • Bekkar, Lourabi Hariz;Mansour, Abdelouahab
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.515-523
    • /
    • 2019
  • The aim of this paper is to present some necessary and sufficient conditions for existence of solution of Sylvester operator equation involving bounded subnormal operators in a Hilbert space. Our results improve and generalize some results in the literature involving normal operators.

ON THE SOLVABILITY OF A NONLINEAR LANGEVIN EQUATION INVOLVING TWO FRACTIONAL ORDERS IN DIFFERENT INTERVALS

  • Turab, Ali;Sintunavarat, Wutiphol
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.1021-1034
    • /
    • 2021
  • This paper deals with a nonlinear Langevin equation involving two fractional orders with three-point boundary conditions. Our aim is to find the existence of solutions for the proposed Langevin equation by using the Banach contraction mapping principle and the Krasnoselskii's fixed point theorem. Three examples are also given to show the significance of our results.

FERMAT'S EQUATION OVER 2-BY-2 MATRICES

  • Chien, Mao-Ting;Meng, Jie
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.609-616
    • /
    • 2021
  • We study the solvability of the Fermat's matrix equation in some classes of 2-by-2 matrices. We prove the Fermat's matrix equation has infinitely many solutions in a set of 2-by-2 positive semidefinite integral matrices, and has no nontrivial solutions in some classes including 2-by-2 symmetric rational matrices and stochastic quadratic field matrices.

ON NONLINEAR VARIATIONAL INCLUSIONS WITH ($A,{\eta}$)-MONOTONE MAPPINGS

  • Hao, Yan
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.159-169
    • /
    • 2009
  • In this paper, we introduce a generalized system of nonlinear relaxed co-coercive variational inclusions involving (A, ${\eta}$)-monotone map-pings in the framework of Hilbert spaces. Based on the generalized resol-vent operator technique associated with (A, ${\eta}$)-monotonicity, we consider the approximation solvability of solutions to the generalized system. Since (A, ${\eta}$)-monotonicity generalizes A-monotonicity and H-monotonicity, The results presented this paper improve and extend the corresponding results announced by many others.

Positive Real Control for Uncertain 2-D Singular Roesser Models

  • Xu Huiling;Xie Lihua;Xu Shenyuan;Zou Yun
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.195-201
    • /
    • 2005
  • This paper discusses the problem of positive real control for uncertain 2-D linear discrete time singular Roesser models (2-D SRM) with time-invariant norm-bounded parameter uncertainty. The purpose of this study is to design a state feedback controller such that the resulting closed-loop system is acceptable, jump modes free and stable, and achieves the extended strictly positive realness for all admissible uncertainties. A version of positive real lemma for the 2-D SRM is given in terms of linear matrix inequalities (LMIs). Based on the lemma, a sufficient condition for the solvability of the positive real control problem is derived in terms of bilinear matrix inequalities (BMIs) and an iterative procedure for solving the BMIs is proposed.

H Filtering for a Class of Nonlinear Systems with Interval Time-varying Delay (구간시변 지연을 가지는 비선형시스템의 H 필터링)

  • Lee, Sangmoon;Liu, Yajuan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.502-508
    • /
    • 2014
  • In this paper, a delay-dependent $H_{\infty}$ filtering problem is investigated for discrete-time delayed nonlinear systems which include a more general sector nonlinear function instead of employing the commonly used Lipschitz-type function. By using the Lyapunov-Krasovskii functional approach, a less conservative sufficient condition is established for the existence of the desired filter, and then, the corresponding solvability condition guarantee the stability of the filter with a prescribed $H_{\infty}$ performance level. Finally, two simulation examples are given to show the effectiveness of the proposed filtering scheme.