• Title/Summary/Keyword: Snubber

Search Result 411, Processing Time 0.021 seconds

A lossless snubber for SRM converters (Switched Reluctance Motor 구동용 Converter의 무손실 Snubber)

  • Kim, Won-Ho;Ha, Sung-Woon;Rim, Geun-Hie
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.426-428
    • /
    • 1994
  • The effect of the snubber circuit is to control the voltage spikes applied across switching devices during turn-off. This paper describes a loss-less snubber of a converter for Switched Reluctance Motors. The feasibility of the snubber circuitry is experimentally verified using a laboratory prototype.

  • PDF

High-Power-Factor Boost Rectifier with a Passive Energy Recovery Snubber (에너지재생 수동스너버를 갖는 고역율 부스트 정류기)

  • 김만고;백승호
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.428-432
    • /
    • 1998
  • A passive energy recovery snubber for high-power-factor boost rectifier, in which the main switch is implemented with a MOSFET, is described in terms of the equivalent circuits that are operational during turn-on and turn-off sequences. The main switch combined with proposed snubber can be turned on with zero current and turned off at limited voltage stress. The high-power-factor boost rectifier with proposed snubber is implemented, and the experimental results are presented to confirm the validity of proposed snubber.

  • PDF

A New Commutation Circuit for PWM Cuk AC-AC Converter (PWM Cuk AC-AC 컨버터를 위한 새로운 Commutation 회로)

  • Choi Nam-Sup;Li Yulong;Kim In-Dong
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.143-145
    • /
    • 2006
  • This paper proposes a snubber circuit for a PWM AC-AC Cuk converter. The proposed snubber applies a modified Undeland snubber as a commutation aid. The snubber circuit has some good features such as reduction of voltage/current stress of the main switches, improved efficiency. The experiment results show the adaptability and feasibility of the proposed snubber circuit.

  • PDF

A Snubber Design for Low Power Dissipation and Overvoltage Limitation in Three-Level GTO Inverters (3-레벨 GTO 인버터를 위한 새로운 스너버회로 설계)

  • Suh, Jae-Hyeong;Suh, Bum-Seok;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.153-155
    • /
    • 1994
  • This paper presents a new low loss snubber including the overvoltage snubber for three-level GTO inverters. The proposed snubber can not only minimizes the snubber loss and the number of components but also improve blocking voltage balancing problem between the inner and the outer GTOs.

  • PDF

Three Phase GTO PWM Inverter Using the Energy Recovery Snubber Circuit (에너지 회생 방식 스너버 회로를 각는 3상 GTO PWM 인버터)

  • 신병철;강경호;차재현;차득근;김명현
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.255-259
    • /
    • 1998
  • This paper is proposed three phase GTO PWM Inverter with energy recovery snubber circuit. The proposed energy recovery snubber circuit effective in reduction of the power loss in the Inverter system than asymmetry GTO snubber circuit.

  • PDF

The CFD Analysis Comparison of Several Snubbers with different Buffer Width (버퍼의 넓이가 다른 스너버의 수치해석 비교)

  • Lee, G.H.;Shim, K.J.;Lee, Y.H.;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.38-43
    • /
    • 2007
  • Pulsation is an inherent phenomenon in reciprocating compressors. It interacts with piping to cause vibrations and performance problems. Indiscriminately connecting to a compressor can be dangerous and cost money in the form of broken equipment and piping, poor performance, inaccurate metering, unwanted vibration, and sometimes noise. Piping connected to a compressor can materially affect the performance and response. To minimize these detrimental effects, reciprocating compressor system should be equipped by pulsation suppression system. The system usually comprises bottle volume, called snubber. Snubber is one of the most important parts in hydrogen compressing system. It has installed reciprocating hydrogen compressor. One of these components is snubber which has function to reduce pulsation waveform and to remove the impurities in the hydrogen gas. A snubber has an inclined plate as a buffer, which is installed inside snubber. When the pressure loss and the pulsation of pressure within a snubber is minimized, the snubber could get more applicability. Therefore, a study to find an optimum geometric size on a several snubbers which have different buffer width, has been conducted using a numerical analysis.

  • PDF

A Generalization of High Frequency Converter with Lossless Snubber Cell (무손실 스너버 셀을 갖는 고주파 컨버터의 일반화)

  • Joung Gyu-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.478-484
    • /
    • 2004
  • In this paper, two lossless snubber cells are proposed to generalize high frequency converter with losslless snubber. The selecting of snubber cells, which generalize high frequency converters, are depended on converter topologies. The cells have a saturable inductor, LC resonant tank and two diodes. In the cells, the saturable inductors extremely reduce resonant energy in the LC resonant tank. By minimizing resonant energy, the converter, which applies snubber cells, can operate at high frequency. These cells are applied for Buck, Boost, Buck-Boost, Cuk, ZETA, and SEPIC to generalize converter which have lossless snubber. The boost type converter has been implemented, with 400 kHz switching frequency for 125 W load to verify the converter characteristics.

The Sugge Voltage restraint of induction motor using low-loss snubber circuit (저손실 스너버 회로를 이용한 유도전동기의 서지전압 억제)

  • Cho, Man-Chul;Mun, Sang-Pil;Kim, Chil-Yong;Kim, Ju-Yong;Shu, Ki-Young;Kwon, Soon-Kurl
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.473-477
    • /
    • 2007
  • The development of advanced Insulated Gate Bipolar Transistor(IGBT)has enabled high-frequency switching operation and has improved the performance of PWM inverters for motor drive. However, the high rate of dv/dt of IGBT has adverse effects on motor insulation stress. In many motor drive applications, the inverter and motor are separated and it requires long motor feds. The long cable contributes high frequency ringing at the motor terminal and it results in hight surge voltage which stresses the motor insulation. The inverter output filter and RDC snubber are conventional method which can reduce the surge voltage. In this paper, we propose the new low loss snubber to reduce the motor terminal surge voltage. The snubber consists of the series connection of charging/discharging capacitor and the voltage-clamped capacitor. At IGBT turn-off, the snubber starts to operate when the IGBT voltage reaches the voltage-clamped level. Since dv/dt is decreased by snubber operating, the peak level of the surge voltage can be reduced. Also the snubber operates at the IGBT voltage above the voltage-clamped level, the snubber loss is largely reduced comparing with RDC snubber. The proposed snubber enables to reduce the motor terminal surge voltage with low loss.

  • PDF

Soft Switching Single Stage AC-DC Full Bridge Boost Converter Using Non-Dissipative Snubber Circuits (무손실 스너버적용 소프트 스위칭 Single Stage AC-DC Full Bridge Boost 캔버터)

  • Kim, E.S.;Kim, T.J.;Joe, K.Y.;Kim, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.1989-1992
    • /
    • 1997
  • A new soft switching single stage AC-DC full bridge boost converter with unit input power factor and isolated output is presented. Due to using of the non-dissipative snubber in the primary side, a single stage high-power factor isolated full bridge boost converter has a significant reduction of switching losses in main switching devices and output rectifiers of the primary and secondary side, respectively. The non-dissipative snubber adopted in this study is consisted of a snubber capacitor C. and a snubber inductor $L_r$, a fast recovery snubber diode $D_r$, a commutation diode $D_p$. This paper presents the complete operating principles, theoretical analysis and simulation results.

  • PDF

A New Power Factor Correction Circuit Using Boost Converter (부스트 컨버터를 이용한 새로운 역율 개선회로)

  • Kim, Marn-Go
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.355-357
    • /
    • 1996
  • With the wide-spread use of rectifier in electronic equipments, such problems as electronic components failures or equipment disorders have been occurred due to current harmonics. To overcome these problems, power factor correction circuits employing boost converter have been used. The switching stress of boost converter can be reduced by snubber circuit. Recently, research activities in snubber circuits have been directed to energy recovery snubber for improving the efficiency of power converter. In this study, a new passive snubber circuit which can recover trapped snubber energy without added control is proposed for boost converter The control of boost converter with proposed snubber is the same as the conventional one. In addition, the energy recovery circuit can be implemented with a few passive components. The circuit operation is confirmed through simulation.

  • PDF