• Title/Summary/Keyword: Small signal modeling

Search Result 150, Processing Time 0.024 seconds

Small-Signal Modeling and Control of Three-Phase Bridge Boost Rectifiers under Non-Sinusoidal Conditions

  • Chang, Yuan;Jinjun, Liu;Xiaoyu, Wang;Zhaoan, Wang
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.757-771
    • /
    • 2009
  • This paper proposes a systematic approach to the modeling of the small-signal characteristics of three-phase bridge boost rectifiers under non-sinusoidal conditions. The main obstacle to the conventional synchronous d-q frame modeling approach is that it is unable to identify a steady-state under non-sinusoidal conditions. However, for most applications under non-sinusoidal conditions, the current loops of boost rectifiers are designed to have a bandwidth that is much higher than typical harmonics frequencies in order to achieve good current control for these harmonic components. Therefore a quasi-static method is applied to the proposed modeling approach. The converter small-signal characteristics developed from conventional synchronous frame modeling under different operating points are investigated and a worst case point is then located for the current loop design. Both qualitative and quantitative analyses are presented. It is observed that operating points influence the converter low frequency characteristics but hardly affect the dominant poles. The relationship between power stage parameters, system poles and zeroes is also presented which offers good support for the system design. Both the simulation and experimental results verified the analysis and proposed modeling approach. Finally, the practical case of a parallel active power filter is studied to present the modeling approach and the resultant regulator design procedure. The system performance further verifies the whole analysis.

Small-Signal Modeling and Controller Design of Grid-Connected Inverter for Solid State Transformer (반도체 변압기용 단상 계통 연계형 인버터의 소신호 모델링과 제어기 설계)

  • Kim, Bo-Gyeong;Lee, Jun-Young;Lee, Soon-Sinl;Jung, Jee-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.40-47
    • /
    • 2017
  • In this paper, a small signal model for grid-connected inverter with unipolar pulse width modulation method is presented. Small-signal analysis allows to predict the stability and dynamics of the inverter. To regulate output voltage and to achieve power factor correction, inverter has two control loops. Loop gains are useful to identify the stability for multi-loop controlled system. Based on small-signal model, controllers are designed to improve audio susceptibility and output impedance characteristics. Proposed small-signal model and controllers are verified by PSIM simulation and experiments.

Study on Small-signal Modeling and Controller Design of DC-DC Dual Active Bridge Converters (DC-DC Dual Active Bridge 컨버터의 소신호 모델링 및 제어기 설계에 관한 연구)

  • Lee, Won-Bin;Choi, Hyun-Jun;Cho, Jin-Tae;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.159-165
    • /
    • 2017
  • Small-signal modeling and controller design methodology are proposed to improve the dynamics and stability of a DC-DC dual active bridge (DAB) converter. The state-space average method has a limitation when applied to the DAB converter because its state variables are nonlinear and have zero average values in a switching period. Therefore, the small-signal model and the frequency response of the DAB converter are derived and analyzed using a generalized average method instead of conventional modeling methods. The design methodology of a lead-lag controller instead of the conventional proportional-integral controller is also proposed using the derived small-signal model. The accuracy and performance of the proposed small-signal model and controller are verified by simulation and experimental results with a 500 W prototype DAB converter.

Modeling and Small-Signal Analysis of Controlled On-time Boost Power Factor Correction Circuit (도통 시간 제어형 승압형 역률보상회로의 모델링과 소신호 해석)

  • Park, Hyo-Gil;Hong, Seong-Su;Choe, Byeong-Jo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.364-370
    • /
    • 2000
  • A large-signal average model for the controlled on-time boost power factor correction(PFC) circuit is developed and subsequently linearized resulting in a small-signal model for the PFC circuit. Ac analyses are performed using the small-signal model, revealing new results new on small-signal dynamics of the PFC circuit. The analysis results and model predictions are confirmed with experimental measurements on 200W prototype PFC circuit.

  • PDF

Fundamental Small-signal Modeling of Li-ion Batteries and a Parameter Evaluation Using Levy's Method

  • Zhang, Xiaoqiang;Zhang, Mao;Zhang, Weiping
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.501-513
    • /
    • 2017
  • The fundamental small-signal modeling of lithium-ion (Li-ion) batteries and a parameter evaluation approach are investigated in this study to describe the dynamic behaviors of small signals accurately. The main contributions of the study are as follows. 1) The operational principle of the small signals of Li-ion batteries is revealed to prove that the sinusoidal voltage response of a Li-ion battery is a result of a sinusoidal current stimulation of an AC small signals. 2) Three small-signal measurement conditions, namely stability, causality, and linearity, are proved mathematically proven to ensure the validity of the frequency response of the experimental data. 3) Based on the internal structure and electrochemical operational mechanism of the battery, an AC small-signal model is established to depict its dynamic behaviors. 4) A classical least-squares curve fitting for experimental data, referred as Levy's method, are introduced and developed to identify small-signal model parameters. Experimental and simulation results show that the measured frequency response data fit well within reading accuracy of the simulated results; moreover, the small-signal parameters identified by Levy's method are remarkably close to the measured parameters. Although the fundamental and parameter evaluation approaches are discussed for Li-ion batteries, they are expected to be applicable for other batteries.

Small Signal Modeling for the PWM Series Resonant Converter (PWM-SRC) (펄스-폭 변조방식의 직렬공진 컨버터의 소신호 모델링)

  • Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1441-1447
    • /
    • 1999
  • A discrete time domain modeling is presented for the pulse-width modulated series resonant converter (PWM-SRC) with a discontinuous current mode. This nonlinear system is linearized about its equilibrium state to obtain a linear discrete time model for the investigation of small signal performances such as the stability and transient response. The usefulness of this small signal model is verified through the dynamic simulation.

  • PDF

A New Small-Signal Modeling Method of HEMT Using Weakly Pinched-Off Cold-HEMT (약하게 핀치오프된 Cold-HEMT를 이용한 새로운 HEMT 소신호 모델링 기법)

  • 전만영
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.743-749
    • /
    • 2003
  • By biasing the gate of cold-HEMT with a voltage slightly lower than the pinch-off point, a new small-signal modeling method that is free from gate degradation problem and requires no additional DC measurement is proposed in this paper. The method has shown excellent agreement between modeled and measured S-parameters up to 62 GHz at 49 different normal operating bias points.

A Small Signal Modeling of Three-level Neutral-Point-Clamped Inverter and Neutral-Point Voltage Oscillation Reduction (3레벨 NPC인버터의 소신호 모델링과 중성점 전압 진동 저감)

  • Cho, Ja-Hwi;Ku, Nam-Joon;Joung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.407-414
    • /
    • 2014
  • This study proposes a control design for the grid output current and for reducing the neutral-point voltage oscillation through the small-signal modeling of the three-phase grid connected with a three-level neutral-point-clamped (NPC) inverter with LCL filter. The three-level NPC inverter presents an inherent problem: the neutral-point voltage fluctuation caused by the neutral-point current flowing in or out from the neutral point. The small signal modeling consists of averaging, dq0 transformation, perturbing, and linearizing steps performed on a three-phase grid connected to a three-level NPC inverter with LCL filter. The proposed method controls both the grid output and neutral-point currents at every switching period and reduces the neutral-point voltage oscillation. The validity of the proposed method is verified through simulation and experiment.

A New Small Signal Modeling of Average Current Mode Control

  • Jung, Young-Seok;Kang, Jeong-Il;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.609-614
    • /
    • 1998
  • A new small signal modeling of an average current mode control is proposed. In order to analyze the characteristics of the control scheme, the discrete and continuous time small signal models are derived. The derivation are mainly come from the analysis of the sampling effect presented in the current control loop. By the mathematical interpretation of practical sampler representing the sampling effect of a current control loop, the small signal models of an average current mode control can be easily derived. The instability of the current control loop, which gives rise to the subharmonic oscillation, can be identified by the proposed models. To show the usefulness of the proposed models, the simulation and experiment are carried out. The results show that the predicted results by the proposed model are much better agreed with the measured ones than that of the conventional model, even though the high gain of the compensation network of a current control loop is employed.

  • PDF

Small Signal Modeling Analysis and Experimental Verification of LLC Resonant Converter (LLC 공진형 컨버터의 소신호 모델링 분석 및 실험적 검증)

  • Kim, Jinwoo;Lee, Taeyoung;Cho, Younghoon;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.365-366
    • /
    • 2017
  • LLC resonant DC-DC converter is widely used in many kinds of applications such as battery energy storage systems, wireless power transfer and high voltage power supply. It is because of characteristics like high efficiency, power density, isolation, wide power level and stability enhancement at high switching frequency. Small signal modeling helps to design controller of the converter by approximating the behavior of nonlinear system with linear state equations. This paper presents comparison between small signal modeling analysis and experimental results of LLC resonant converter.

  • PDF