• Title/Summary/Keyword: Small Size CMOS

Search Result 104, Processing Time 0.03 seconds

Small CMOS Temperature Sensor Using MOSFETs in the Intermediate-Inversion Region

  • Park, Tai-Soon;Park, Sang-Gyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1086-1087
    • /
    • 2009
  • A small temperature sensor is designed in a 0.35um CMOS process. Transistors operating in the intermediate inversion region are employed in the core of the sensor. This temperature sensor operates in $-50^{\circ}C{\sim}120^{\circ}C$ with ${\pm}2^{\circ}C$ of accuracy after two-point calibration. This temperature sensor can be placed in the active pixel area of a display panel to measure the temperature of the display panel for temperature compensation.

  • PDF

Small size PLL with D Flip-Flop (D플립플롭을 사용한 작은 크기의 위상고정루프)

  • Ko, Gi-Yeong;Choi, Hyuk-Hwan;Choi, Young-Shig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.697-699
    • /
    • 2017
  • A novel structure of phase locked loop (PLL) which has small size with D Flip-Flop and sub charge pump has been proposed. The area of loop filter usually occupying the larger portion of the chip is minimized using a single small capacitor. It has been simulated and proved by HSPICE in a CMOS $0.18{\mu}m$ 1.8V process.

  • PDF

A Low-Noise and Small-Size DC Reference Circuit for High Speed CMOS A/D Converters

  • Hwang, Sang-Hoon;Song, Min-Kyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.1
    • /
    • pp.43-50
    • /
    • 2007
  • In a high-speed flash style or a pipelining style analog-to-digital converter (A/D converter), the DC reference fluctuation caused by external noises becomes serious, as the sampling frequency is increased. To reduce the fluctuations in conventional A/D converters, capacitors have been simply used, but the layout area was large. Instead of capacitors, a low-noise and small-size DC reference circuit based on transmission gate (TG) is proposed in this paper. In order to verify the proposed technique, we designed and manufactured a 6-bit 2GSPS CMOS A/D converter. The A/D converter is designed with a 0.18um 1-poly 6-metal n-well CMOS technology, and it consumes 145mW at 1.8V power supply. It occupies the chip area of 977um by 1040um. The measured result shows that SNDR is 36.25 dB and INL/DNL is within 0.5LSB, even though the DC reference fluctuation is serious.

A CMOS-based Electronically Tunable Capacitance Multipliers

  • Suwannapho, Chonchalerm;Chaikla, Amphawan;Kamsri, Thawatchai;Riewruja, Vanchai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1561-1564
    • /
    • 2004
  • A CMOS-based Electronically Tunable Capacitance Multipliers, which can be magnified the value of a grounded unit capacitance, is presented in this article. The multiplication factor is varied by the ratio of the bias currents. The proposed circuit is simple, small in size and suitable for implementing in standard CMOS process. PSPICE simulation results demonstrating the characteristics of the proposed circuit are included.

  • PDF

An Extremely Small Size Multi-Loop Phase Locked Loop (복수개의 부궤환 루프를 가진 초소형 크기의 위상고정루프)

  • Choi, Young-Shig;Han, Geun-Hyeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • An extremely small size multi-loop phase-locked loop(PLL) keeping phase noise performances has been proposed. It has been designed to have the loop filter made of small single capacitor with multiple Frequency Voltage Converters (FVCs) because the main goal is to make the size of the proposed PLL extremely small. Multiple FVCs which are connected to voltage controlled oscillator(VCO) make multiple negative feedback loops in PLL. Those multiple negative feedback loops enable the PLL with the loop filter made of an extremely small size single capacitor operate stably. It has been designed with a 1.8V $0.18{\mu}m$ CMOS process. The simulation results show that the proposed PLL has the 1.6ps jitter and $10{\mu}s$ locking time.

A PLL with loop filter consisted of switch and capacitance (커패시턴스와 스위치로 구성된 루프필터를 가진 PLL)

  • Ahn, Sung-Jin;Choi, Young-Shig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.154-156
    • /
    • 2016
  • In this paper, the proposed small size PLL works stable with the discrete loop filter which is controlled by voltage controlled oscillator's output signal. Sampling and a small size capacitor functioned negative feedback with switch does make it possible to integrate the PLL into a single chip. The proposed PLL is designed by 1.8V 0.18um CMOS process.

  • PDF

Fabrication of CMOS Custom LSI for Implantable Biotelemeter (바이오 텔레메-터용 CMOS Custom LSI 제작)

  • Seo, Hee-Don;Choi, Se-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1305-1308
    • /
    • 1987
  • This paper presents a design of an optimized implantable biotelemetry system and the fabrication of custom CMOS LSI for implementing this system. The internal circuits of this system are fabricated on a single silicon chip with a size of $4{\times}5mm^2$. This LSI is designed and fabricated not only to get as small size and low power dissipation as possible, but also to have multiple function. Its main functions are to select one of implanted sensors and to accomplish ON - OFF power switching of an implanted battery by receiving appropriate Command signals and control signals fran external circuits. The internal system which was assembled on a bread-board using fabricated LSI chip is confirmed to work as designed. The total power dissipation of this interal system was $10.12{\mu}W$.

  • PDF

A Compression Technique for Interconnect Circuits Driven by a CMOS Gate (CMOS 게이트에 의해서 구동 되는 배선 회로 압축 기술)

  • Cho, Kyeong-Soon;Lee, Seon-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.1
    • /
    • pp.83-91
    • /
    • 2000
  • This paper presents a new technique to reduce a large interconnect circuit with tens of thousands of elements into the one that is small enough to be analyzed by circuit simulators such as SPICE. This technique takes a fundamentally different approach form the conventional methods based on the interconnect circuit structure analysis and several rules based on the Elmore time constant. The time moments are computed form the circuit consisting of the interconnect circuit and the CMOS gate driver model computed by the AWE technique. Then, the equivalent RC circuit is synthesized from those moments. The characteristics of the driving CMOS gate can be reflected with the high degree of accuracy and the size of the compressed circuit is determined by the number of output nodes regardless of the size of the original interconnect circuits. This technique has been implemented in C language, applied to several interconnect circuits driven by a 0.5${\mu}m$ CMOS gate and the equivalent RC circuits with more than 99% reduction ratio and accuracy with 1 ~ 10% error in therms of propagation delays were obtained.

  • PDF

Small-size PLL with time constant comparator (시정수 비교기를 이용한 작은 크기의 위상고정루프)

  • Ko, Gi-Yeong;Choi, Young-Shig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2009-2014
    • /
    • 2017
  • A novel structure of phase locked loop (PLL) with a time constant comparator and a current compensator has been proposed. The proposed PLL uses small capacitors which are impossible for stable operation in a conventional PLL. It is small enough to be integrated into a single chip. The time constant comparator detects the loop filter output voltage variations using signals which are passed through small and large RC time constants. The signal from the large RC time constant node is the average of the loop filter output voltage. The output voltage of another node is approximately equal to the present loop filter voltage. The output of the time constant comparator controls a current compensator and charge/discharge small size loop filter capacitors. It makes the proposed PLL operate stably. It has been simulated and proved by HSPICE in a CMOS $0.18{\mu}m$ 1.8V process.

Ultra-small Form-Factor Helix on Pad-Type Stage-Bypass WCDMA Tx Power Amplifier Using a Chip-Stacking Technique and a Multilayer Substrate

  • Yoo, Chang-Hyun;Kim, Jung-Hyun
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.327-329
    • /
    • 2010
  • A fully integrated small form-factor HBT power amplifier (PA) was developed for UMTS Tx applications. For practical use, the PA was implemented with a well configured bottom dimension, and a CMOS control IC was added to enable/disable the HBT PA. By using helix-on-pad integrated passive device output matching, a chip-stacking technique in the assembly of the CMOS IC, and embedding of the bulky inductive lines in a multilayer substrate, the module size was greatly reduced to 2 mm ${\times}$ 2.2 mm. A stage-bypass technique was used to enhance the efficiency of the PA. The PA showed a low idle current of about 20 mA and a PAE of about15% at an output power of 16 dBm, while showing good linearity over the entire operating power range.