• 제목/요약/키워드: Sliding Mode Observer

Search Result 319, Processing Time 0.025 seconds

An Improved Integral Sliding Mode Controller for Regulation Control of Robot Manipulators (로봇 메니플레이터의 레귤레이션 제어를 위한 개선된 적분 슬라이딩 모드 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.103-113
    • /
    • 2018
  • In this paper, an improved integral variable structure regulation controller is designed by using a special integral sliding surface and a disturbance observer for the improved regulation control of highly nonlinear rigid robot manipulators with prescribed output performance. The sliding surface having the integral state with a special initial condition is employed in this paper to exactly predetermine the ideal sliding trajectory from a given initial condition to the desired reference without any reaching phase. And a continuous sliding mode input using the disturbance observer is also introduced in order to effectively follow the predetermined sliding trajectory within the prescribed accuracy without large computation burden. The performance of the prescribed tracking accuracy to the predetermined sliding trajectory is clearly investigated in detail through the two theorems, together with the closed loop stability. The design of the proposed regulation controller is separated into the performance design and robustness design in each independent link. The usefulness of the algorithm has been demonstrated through simulation studies on the regulation control of a two-link robot under parameter uncertainties and payload variations.

Finite-Time Nonlinear Disturbance Observer Based Discretized Integral Sliding Mode Control for PMSM Drives

  • Zheng, Changming;Zhang, Jiasheng
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1075-1085
    • /
    • 2018
  • To deal with the operation performance degradation of permanent magnet synchronous machine (PMSM) drives with uncertainties and unmodeled dynamics, this paper presents a finite-time nonlinear disturbance observer (FTNDO) based discretized integral sliding mode (DISM) composite control scheme. Based on the reaching-law approach, a DISM speed controller featuring a superior dynamic quality and global robustness against disturbances is constructed. This controller can avoid the reaching phase and overlarge control action. In addition, a sliding mode differentiator based FTNDO is devised and extended to the discrete-time domain for disturbance estimation. The attractive features of the FTNDO are that it can provide a finite-time converging estimation and alleviate the chattering effect in conventional sliding mode observers, while retaining robustness to parameter variations. By feeding the estimate forward to the pre-stage DISM controller, both disturbances and chattering can be significantly suppressed. Moreover, considering the estimation error of a FTNDO caused by discrete sampling, a stability analysis of the composite controller is discussed. Experimental results validate the superiority of the presented scheme.

The Control of Switched Reluctance Motors Using Binary Observer without Speed and Position Sensors (이원 관측기를 이용한 SRM의 속도 및 위치 센서없는 제어)

  • Sin, Jae-Hwa;Yang, Lee-U;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.8
    • /
    • pp.457-466
    • /
    • 2002
  • The speed and position control of SRM(Switched Reluctance Motor) needs the encoder or resolver to obtain the rotor position information. These position sensors can be affected by the EMI, dusty, and high temperature surroundings. Therefore the speed and position sensorless control has been studied widely In this paper, the binary observer of the SRM which has two feedback compensation loops to control the speed of SRM is proposed. One loop reduces the estimation error like the sliding mode observer, and the other removes the estimation error chattering occurred in the sliding mode observer. This observer is constructed on the basis of variable structure control theory and has the inertial term to exclude the chattering. This method has a good estimation performance in spite of nonlinear modeling of SRM. The advantages of the proposed method are verified experimentally.

New Sliding Mode Observer-Model Following Power System Stabilizer Including CLF for Unmeasurable State Variables

  • Lee, Sang-Seung;Park, Jong-Keun
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.88-94
    • /
    • 1997
  • This paper presents the sliding mode observer-model following (SMO-MF) power system stabilizer(PSS) for unmeasurable state variables. This SMO-MF PSS is obtained by combining the sliding mode-model following (SM-MF) including closed-loop feedback(CLF) with the full-order observer(FOO). The control input of the proposed MO-MF PSS is derived by Lyapunov's second method to determine a control input that keeps the system stable for unmeasurable plant state variables. Simulation results show that the proposed SMO-MF PSS including CLF is able to reduce the low frequency oscillation and to achieve asymptotic tracking error between the reference mode state and the estimated plant state at different initial conditions.

  • PDF

Kinematic Model based Predictive Fault Diagnosis Algorithm of Autonomous Vehicles Using Sliding Mode Observer (슬라이딩 모드 관측기를 이용한 기구학 모델 기반 자율주행 자동차의 예견 고장진단 알고리즘)

  • Oh, Kwang Seok;Yi, Kyong Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.931-940
    • /
    • 2017
  • This paper describes a predictive fault diagnosis algorithm for autonomous vehicles based on a kinematic model that uses a sliding mode observer. To ensure the safety of autonomous vehicles, reliable information about the environment and vehicle dynamic states is required. A predictive algorithm that can interactively diagnose longitudinal environment and vehicle acceleration information is proposed in this paper to evaluate the reliability of sensors. To design the diagnosis algorithm, a longitudinal kinematic model is used based on a sliding mode observer. The reliability of the fault diagnosis algorithm can be ensured because the sliding mode observer utilized can reconstruct the relative acceleration despite faulty signals in the longitudinal environment information. Actual data based performance evaluations are conducted with various fault conditions for a reasonable performance evaluation of the predictive fault diagnosis algorithm presented in this paper. The evaluation results show that the proposed diagnosis algorithm can reasonably diagnose the faults in the longitudinal environment and acceleration information for all fault conditions.

The Design of Sliding Model Controller with Perturbation Estimator Using Observer-Based Fuzzy Adaptive Network

  • Park, Min-Kyu;Lee, Min-Cheol;Go, Seok-Jo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.117-123
    • /
    • 2001
  • To improve control performance of a non-linear system, many other reserches have used the sliding model control algorithm. The sliding mode controller is known to be robust against nonlinear and unmodeled dynamic terms. However, this algorithm raises the inherent chattering caused by excessive switching inputs around the sliding surface. Therefore, in order to solve the chattering problem and improve control performance, this study has developed the sliding mode controller with a perturbation estimator using the observer-based fuzzy adaptive network. The perturbation estimator based on the fuzzy adaptive network generates the control input of compensating unmodeled dynamics terms and disturbance. And the weighting parameters of the fuzzy adaptive network are updated on-line by adaptive law in order to force the estimation errors converge to zero. Therefore, the combination of sliding mode control and fuzzy adaptive network gives rise to the robust and intelligent routine. For evaluation control performance of the proposed approach, tracking control simulation is carried is carried out for the hydraulic motion simulator which is a 6-degree of freedom parallel manipulator.

  • PDF

Active Suspension using Disturbance Accommodating Sliding Mode Control (능동 현가 장치의 외란 적응 슬라이딩 모드 제어)

  • 김종래;김진호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.275-280
    • /
    • 1999
  • This paper presents a disturbance accommodating sliding mode control for a quarter-car active suspension using an electro-hydraulic actuator. The electro-hydraulic actuator model is nonlinear and uncertain. The hardware constrains on the actuator prevent high gain in a sliding mode control, which deteriorates the force tracking performance. DAC(Disturbance Accommodating Control) is combined with the sliding mode control to improve the tracking performance. DAC observer estimates the pressure due to the actuator uncertainty. The additional control is designed to compensate the estimated pressure. Simulation results show the improved tracking performance with the Proposed control methods.

  • PDF

Stability Proof of NFL-FOO/SMC : Part 1 (NFL-FOO/SMC의 안정도 증명 : Part 1)

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.973-975
    • /
    • 1998
  • For a nonlinear feedback linearization-full order observer/sliding mode controller (NFL-FOO/SMC), the separation principle is derived, and the closed-loop stability is proved by a Lyapunov function candidate using an addition form of the sliding surface vector and the estimation error.

  • PDF

Stability Proof of NFL-FOO-based SMC : Part 5 (NFL-FOO에 기준한 SMC의 안정도 증명 : Part 5)

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.985-987
    • /
    • 1998
  • This paper presents a stability proof for the nonlinear feedback linearization-full order observer-based sliding mode controller (NFL-FOO-based SMC). The closed-loop stability is proved by a Lyapunov function candidate using an addition form of the sliding surface vector and the estimation error.

  • PDF

Stability Proof of NFL-ROO/SMC : Part 2 (NFL-ROO/SMC의 안정도 증명 : Part 2)

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.976-978
    • /
    • 1998
  • This paper presents the stability proof of a nonlinear feedback linearization-reduced order observer/sliding mode controller (NFL-ROO/SMC). The closed-loop stability is proved by a Lyapunov function candidate using an addition form of the sliding surface vector and the estimation error.

  • PDF