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Abstract - In this paper, an improved integral variable structure regulation controller is designed by using a special integral 

sliding surface and a disturbance observer for the improved regulation control of highly nonlinear rigid robot manipulators 

with prescribed output performance. The sliding surface having the integral state with a special initial condition is employed 

in this paper to exactly predetermine the ideal sliding trajectory from a given initial condition to the desired reference 

without any reaching phase. And a continuous sliding mode input using the disturbance observer is also introduced in order 

to effectively follow the predetermined sliding trajectory within the prescribed accuracy without large computation burden. 

The performance of the prescribed tracking accuracy to the predetermined sliding trajectory is clearly investigated in detail 

through the two theorems, together with the closed loop stability. The design of the proposed regulation controller is 

separated into the performance design and robustness design in each independent link. The usefulness of the algorithm has 

been demonstrated through simulation studies on the regulation control of a two-link robot under parameter uncertainties 

and payload variations.
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1. Introduction

In servo control, three fundamental problems are the 

point-to-point(regulation) control problem, tracking problem 

(trajectory following), and mixed problem. The regulation 

problem is concerned with moving control objects from a 

point to another. While the controllers for the regulation 

problem are required to provide a small positioning error and 

superior regulation. In the tracking control, control objects 

must be moved along the desired trajectory with the same 

initial position as that of plants. Particularly, the mixed 

problem is the tracking problem with the severely different 

initial position of plants from that of planned trajectory in 

which the features of both regulation and tracking problems 

exist. The regulation, tracking, and mixed problems are very 

important in many mechanical systems such as robot 

manipulators, machining systems, tracking antennas etc. 

These three control problems may be combined in practical 

fields. Among them, the regulation control problem of robot 

manipulators is the theme of this paper.

A great deal of the researches on the control of highly 

nonlinear rigid robot manipulators has been reported in 

order to improve the performance of controllers and to 

extend the application fields of robot manipulators [1]. There 

are several approaches to attempt to obtain the desired 

performances such as decentralized PID [2, 3], optimal 

control, state feedback control(linear techniques until now), 

computed torque method [4, 7, 8], adaptive control [9, 10], 

sliding mode control [11-21, 27], and others [22-26] 

(nonlinear techniques). Each method has its merits and 

shortcomings. In the model based methods [5, 6, 20] among 

them, specially, all of highly nonlinear dynamics models are 

taken into account to calculate the control input which is a 

hard task in view of the computation time of the process for 

controllers, which needs the robustness property for 

controllers against all the modeling errors. In order to obtain 

the robustness against parameter variations and uncertainties, 

the variable structure system(VSS) with the sliding mode 

control(SMC) for robot manipulators has been studied by 

many researchers [11-21, 27]. The strong robustness with the 

simple control structure can be obtained in spite of the 
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existence for an acceptable modeling error and unknown 

payload by using the sliding mode. The other advantages of 

a SMC are that the almost output performance can be 

predetermined by choosing the sliding surface. The first 

application of SMC to robot manipulator seems to be in the 

work of Young [11] dealing with a set point regulation 

problem. A modification of the Young’s controller was 

presented by Morgan [13]. Other SMCs of robot manipulators 

may be found. However, the existing SMCs for robot 

manipulators unfortunately have the problem of the reaching 

phase in the regulation controls during the transient period. 

Hence the whole output is not completely robust and it is 

difficult to obtain accurate pre-information on the control 

performance. Because of this reaching phase, the works 

about the reacheability and convergence to the sliding 

surface with finite time are reported. To increase the steady 

state performance of controllers, an integral action with a zero 

initial value is simply introduced to the variable structure 

system, but which causes the inevitable overshoot problems 

in the transient state as a side effect [23]. To alleviate 

computation burden due to the nonlinear dynamics of 

manipulators, the multi sampling technique is employed to the 

inner and outer two loop control scheme(Lee and Kwon [24]) 

which results in the complexity of the analysis and design. 

The neural network is considered for the control of robot 

manipulators, it is good for static nonlinear dynamics but not 

effective for the unknown payload and external disturbances 

[25]. Using the fuzzy control, the set-point regulation of 

robot manipulators with flexible joints is studied in [26]. 

Currently, the sliding mode control is applied to the tracking 

and regulation control of medical surgery robots[27].

In [29], a continuous integral variable structure system 

with the prescribed control performance is reported for the 

regulation control of uncertain general linear plants.

In this paper, an integral variable structure regulation 

controller with the prescribed accuracy to the predetermined 

output is designed for highly nonlinear rigid robot 

manipulators without the problems mentioned above. With 

the proposed technique, the reaching phase is completely 

removed by means of the integral sliding surface augmented 

by the integral state with special initial value. The ideal 

sliding dynamics of the integral sliding surface is analytically 

obtained from a given initial point without the reaching 

phase. The solution of the ideal sliding dynamics 

predetermines the ideal sliding trajectory from a given initial 

point to the desired reference. The relationship between the 

value of the sliding surface and the error to the ideal sliding 

trajectory is analyzed in Theorem 1. The continuous sliding 

mode input based on the disturbance observer for efficient 

compensation of the nonlinear dynamics of robot 

manipulators can derive robot manipulators to follow the 

predetermined ideal sliding trajectory within the prescribed 

accuracy. The calculation burden in control input is also 

avoided by using the disturbance observer effectively 

calculating the nonlinear dynamics of robot manipulators. 

The stability of the closed loop system is investigated in 

detail in Theorem 2. The results of Theorem 2 provide the 

stable condition for control gains. Combing the results of 

Theorem 1 and Theorem 2 gives rise to possibility of 

designing the improved integral variable structure regulation 

controller to guarantee the tracking error from the 

predetermined sliding trajectory within the prescribed 

accuracy. The usefulness of the algorithm has been 

demonstrated through the simulations of the regulation 

control of a two-link robot under parameter uncertainties 

and payload variations. 

2. An Integral Variable Structure Controller

2.1, State equation of robot manipulators

The motion equations of an n degree-of-freedom 

manipulator can be derived using the Lagrange-Euler 

formulation as

⋅   (1)

where   ∈ ×  is a symmetric positive definite 

inertia matrix, ∈  is called a smooth 

generalized disturbance vector as follows:

  



            (2)

including the centrifugal and Coriolis terms , 

Coulomb and viscous or any other frictions  , 

gravity terms  , unknown pay loadand etc. where  

is an input vector, and  , , and ∈  are the 

generalized position, velocity, and acceleration vectors, 

respectively. The   is the vector composed of the 

parameters of robot manipulators (i.e. the masses, lengths, 

offset angles, and inertia of links). An exact modeling of 

physical robot dynamics is difficult because of the existence 

of parameter uncertainties, unknown frictions, and payload 

variations. In this study for the regulation problem, a 

desired reference ∈  is given from a current state and 

 
   is satisfied. Let us define the state vector 
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∈  in the error coordinate system for the improved 

integral variable structure regulation controller as

  
 

                               (3)

where   and   are the trajectory errors and its 

derivative as

 ≡  

 ≡ 

                               (4)

Then the state equation of robot systems for the 

regulation control becomes

 


 
 


⋅




 

 



⋅





 

 ⋅




 

   (5)

where   
  


  is a given initial condition. 

For (5), a new improved integral variable structure regulation 

controller will be designed through the two steps, design of 

the integral sliding surface and choice of continuous control 

input. And some analysis about the relationship between 

the error to the sliding trajectory and the non-zero value 

of the sliding surface and the closed loop stability will be 

given in each step.

2.2 An integral sliding surface, its sliding trajectory, and 

error analysis

First of all, let's define an integral-augmented sliding 

surface vector  be 

≡ ⋅                  (6)

where

  




  

  
   

                      (7)

where   and  are diagonal coefficient matrices and 

  is the integral of the error with the special initial 

condition for removing the reaching phase by means of 

making the integral sliding surface be zero at   , i.e.,

  . Thus this integral augmented sliding surface 

determines the ideal sliding mode dynamics to have an ideal 

second order dynamics exactly from a given initial condition 

to the origin in the error coordinate system without any 

reaching phase, not a straight line of the conventional 

sliding surface through the origin. If     in (7) such 

as previous works [23] on the integral variable structure 

systems, there exist still the reaching phase problems 

because ≠ at    and an inevitable over shoot 

problems as the side effect because the integral state 

accumulated form the zero must re-converge to the zero. 

The sliding dynamics from a given initial condition to the 

origin defined by equation (6) is obtained from    as 

follows:

  

⋅

⋅
   (8)

Then rewrite equation (8) into the state equation form 



  ⋅                            (9)

where 

   
  

   

   and   

∈ × 



  
 




            (10)

The solution of the state equation of the sliding 

dynamics (9) 
 and 

∈   theoretically predetermines the 

ideal sliding trajectory from a given initial state  to the 

desired reference   defined by (6). Since det 
 ,   and ∈ ×  can be chosen so that 

all the eigenvalues of  have the negative real parts, which 

guarantees the exponential stability of the system (9), then 

there exists the positive scalar constants K and  such that

 ≦⋅  (11)

where ||·|| is the induced Euclidean norm.

Now, define  and  are the error from the ideal 

sliding trajectory and its derivative, respectively as

  

 




 
   


 

             (12)

If the sliding surface is zero for all time, naturally this 

defined error and its derivative are also zeros. The sliding 

surface may be not exactly zero if the input of the 

improved integral variable structure regulation controller is 

continuous. Hence the effect of the non-zero value of the 

sliding surface to the error to the sliding trajectory is 

analyzed in the following Theorem 1 as a prerequisite to 

the main theorem.

Theorem 1: If the sliding surface defined by equation (6) 
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satisfies  ≦  for any  ≧  and  ≦ is 

satisfied at the initial time, then

 ≦ 
 ≦ 

                                 (13)

is satisfied for all  ≧ where   and   are the positive 

constants defined as follows:

  


⋅   ⋅




⋅

 

          (14)

Proof: Let us define a new error vector as 

 










    

   






             (15)

The sliding surface can be re-written as

   ⋅ ⋅


⋅
⋅


              (16)

and can be re-expressed in a differential matrix from as

⋅






⋅                                (17)

In (17), the sliding surface may be considered as the 

bounded disturbance input,  ≦. The solution of (17) 

is expressed as

  ⋅




⋅




⋅             (18)

From the boundness of the sliding surface and (11), the 

Euclidean norm of the vector  becomes

   ⋅




⋅




⋅

≦⋅ ⋅




⋅






⋅ 

≦ 


⋅  

 ⋅⋅ 
≦


⋅

 (19)

for all time,  ≧. Since  ≦ 
, the following equation 

is obtained

   ≦ 

⋅                (20)

From the sliding surface, one can be simply obtained as

    ⋅
                            (21)

If the norm operation is taken on both sides, (21) becomes

  ≦ ⋅⋅

                        (22)

which completes the proof of Theorem 1.

The above Theorem 1 implies that the error from the ideal 

sliding trajectory and its derivative are uniformly bounded 

provided the sliding surface is bounded for all time  ≧. 

Using this result of Theorem 1, we can give the specifications 

on the error from the ideal sliding trajectory being dependent 

upon the value of the integral sliding surface, (6). In the 

next section, we will design a variable structure regulation 

controller with the efficient compensation which can 

guarantee the boundedness of s(t), i.e.,  ≦ for a given 

, then the error to the ideal sliding trajectory is bounded by 

  in virtue of Theorem 1. 

2.3. Continuous input and its stability analysis 

Robot manipulators activated by several servo motors are 

subject to a variety of disturbances and uncertainties. The 

robust control of highly nonlinear robot manipulators is 

essential for developing robotics. It is often noted that the 

generalized nonlinear disturbances,  , must be 

compensated for improving the control performance. As an 

ideal control input in the sliding mode control, the equivalent 

control of the augmented sliding surface (6) for the robot 

system (5) is obtained from equation (8)

   ⋅         (23)

The smooth generalized disturbance    is 

included in an equivalent control,   . Since generally 

this smooth generalized disturbance is very complex, a 

direct calculation of the smooth generalized disturbance 

from the model of robot manipulators results in the long 

sampling time, limitations of the control performance, and 

difficulties of the controller design for highly nonlinear 

robot manipulators.

In this paper, using the efficient compensation method, so 

called disturbance observer[22], we consider the following 

continuous control input, 

                                     (24)

where  is the compensation term for the smooth 

generalized disturbance as well as the error of the nominal 

inertia matrix, is not the direct calculation from 

   in the model but the efficient estimation of 
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the generalized disturbance,    , only using the 

nominal inertia matrix,   of the model (1) and an available 

acceleration information which can be calculated from the 

speed information by means of the Euler method

  ⋅


   ⋅


 ⋅

              (25)

where 
,  , , and  are defined by

 

 
                              (26)

                              (27)

 
                                  (28)

                                  (29)

respectively, where   is the deviation between the 

real inertia matrix and its nominal value,  is the 

acceleration information error to the real acceleration value, 

 is the control input delay error resulted from the 

digital control, and h is the sampling time for digital 

implementation. If the sampling time is sufficiently small 

and control input is continuously implemented, then the 

acceleration information error  and the control input 

delay error  can be small. This disturbance observer 

fails at the initial time because  is unknown, hence 

only  is once calculated by using the model of robots 

with off-line in advance. The detail features of disturbance 

observer is explained in the work of Komoda in [22]. The 

second term in the right hand side of the equation (24) is 

defined as 

  
                                 (30)

where  is the modified equivalent control for the 

compensated dynamics of equation (1), and is designed so 

that the error dynamics of the controlled system has the 

sliding surface dynamics defined by equation (9), which is 

defined as

  ⋅⋅ ⋅                       (31)

As can be seen in (31),  is determined directly 

according to the design of the integral sliding surface. The 

  is the continuous feedback term of the integral sliding 

surface for correcting the small compensation error as 

follows:

   ⋅⋅⋅

 


                  (32)

where  ,  , and  are the suitable positive constants as 

the design parameters for the continuous control input. 

After effectively compensating a almost part of nonlinear 

dynamics of robot manipulators based on the disturbance 

observer for avoiding a heavy computation burden, the 

sliding control input is totally continuously implemented. As 

the function of the disturbance observer, the effective 

compensation for highly nonlinear generalized disturbances 

and modeling errors of the inertia matrix will be studied. If 

we apply the continuous input control torque given by 

equation (24)-(32) to the robotic system (5), the following 

equation is obtained

 
 ⋅⋅

 ⋅⋅


⋅ ⋅ ⋅

⋅





(33)

and the dynamics of s(t) is expressed in the following 

simple form

    ⋅⋅                   (34)

where  ∈  is the resulting disturbance vector given 

by

    


 
 ⋅⋅

 ⋅

             (35)

From the equation (34), the 2n-th order original 

regulation control problem is converted to the 2n-th 

stabilization problems with three degree of freedoms  , 

 , and  against the resultant disturbance   by means 

of the proposed algorithm which implies the robustness 

problems in the design of controllers. For some positive 

constants   and   defined in (14), let the constant N be 

defined as follows:

 max 


∈  and ∈ 
    (36)

where the matrix norm is defined as the induced Euclidean 

norm, and for a positive number   and a vector ∈
the boundary set defined by as

  ∈ ≦                          (37)

In equation (35), the resultant disturbances are mainly 
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그림 1 제안된 적분 가변 구조 레귤레이션 제어기

Fig. 1 Proposed integral variable structure regulation 

controller

dependent on the acceleration information error and the 

control input computation delay error and not system 

uncertainties or modeling error of robot manipulators. The 

disturbance observer can compensate for modeling errors of 

the inertia matrix besides the smooth generalized disturbance 

(2). Thus the SMC design is independent of the maximum 

bound of modeling errors in the parameter space, but 

dependent on only the resultant disturbance composed of the 

acceleration information error and the control time delay due 

to the digital implementation. 

The stability property of the system (5) with the control 

laws (24)-(32) will be stated in the next theorem:

Theorem 2: Consider the robot system with the control 

algorithm given by the equations (24)-(32). Assume that for 

some positive ,  ≦  and  ≦  are satisfied 

at the initial time   , and if the gains   and   satisfy

 ≧⋅                                   (38)

for a given  and  in (36), then the closed loop 

control system is uniformly bounded(i.e. the solution  is 

uniformly bounded at the origin in the error coordinate 

state space) for all time  ≧ until  ≦  where  is 

defined by

   
    

 

⋅

                           (39)

Proof: The proof is straightforward, first take Lyapunov 

candidate function as

   

 ⋅                               (40)

and differentiate with respect to time, it leads to

    ⋅
   

  ⋅⋅ 
      (41)

By the matrix inequality, (41) becomes

 ≦ ⋅   ⋅⋅ 
≦ ⋅ ⋅⋅ 

≦

⋅  ⋅

 (42)

If the gains   and   satisfy the inequality (38)

                                          (43)

at all  ≧ as long as  ≧ , which completes the proof 

of Theorem 2.

Theorem 2 guarantees the uniform bounded stability of 

the proposed continuous improved integral variable structure 

regulation controller for robot manipulators. The smaller  

in control algorithm (32), the lower value of . The  can 

be decreased by an increase of   for a given  and  so 

that  is sufficiently smaller than  the bound of the 

sliding surface in Theorem 1(). If the initial value of 

the sliding surface is small( ≦ ) which is reasonable 

in case of the known initial state of robot manipulators, the 

feedback control (24)-(32) designed by Theorem 1 and 

Theorem 2 maintains the bounded stability of the system 

with the prescribed performance:

∈  and ∈                 (44)

which implies guaranteeing the prescribed tracking error   

to the ideal sliding trajectory 
  predetermined by the 

integral sliding surface from a given initial condition  to 

 , in other words, guaranteeing the predetermined output 

response with the prescribed accuracy. Fig. 1 shows the 

structure of the proposed algorithm composed of the 

compensation term, modified equivalent term, and continuous 

feedback term of the integral sliding surface which is 

relatively simple because of avoidance of large computation 

burden and nature of the VSS. Thus the sampling time can 

be as small as possible so that the acceleration information 

calculated by Euler method and the delayed control input are 

almostly exact to each real value, therefore, the maximum 

value N can be small. Therefore, a new SMC can be realized 

effectively. And robot manipulators are controlled to follow 

the predetermined sliding trajectory from  to  . The 
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그림 3 참고문헌 [23] 기존 IVSS에 의한 3가지 경우에 대한 2 

링크의 위치 오차 응답

Fig. 3 Position error responses of two links for three cases 

by previous IVSS algorithm in [23] case 1:no 

modeling error, case 2: 10 [%] modeling error, case 3: 

10 [%] modeling error and 1 [kg] unknown payload

그림 2 스카라 형 2 자유도 머니플레이터

Fig. 2 SCARA–type two degree-of freedom manipulator

sliding trajectory is obtained by the solution of the sliding 

dynamics of (9) in advance. Hence the output is predictable 

with   accuracy. The design procedure of the proposed 

sliding mode controller to guarantee the predetermined output 

with prescribed accuracy is as follows: First, choose the 

desired sliding surface defining the desired sliding dynamics 

(9) which means the determination of the coefficients,   

and   and calculate the ideal sliding trajectory off-line 

(performance design phase). Second, find the constants  and 

 satisfying the equation (11). Third, determine the bound of 

the sliding surface,  using (14) in Theorem 1 for a given 

the accuracy of the tracking error to the sliding trajectory, 

 . And finally design the gains,   and  , in equation 

(32) based on Theorem 2 so that the  is smaller than 

(robustness design phase). In the whole procedure, the design 

does not need the information of maximum bound of system 

parameter variations or uncertainties because of the efficient 

on-line compensation.

3. Design Examples and Simulation Studies

Numerical simulations are performed to show the accurate 

and robust control property of the proposed algorithm. The 

dynamic model of a SCARA-type two degree-of-freedom 

manipulator shown in Fig. 2 used in this simulation is as 

follows: 










 ⋅







  


  


  







  


 








⋅

⋅





 





















⋅







  


 












   (45)

where  ,  , and  imply cos , sin  and cos , 
respectively. The manipulator parameters are m1 = m2 = 

0.782[kg], l = 0.23[m], and g = 9.8[m/sec2].

The reference command   
    is given for the 

two links as an example. The sampling time is selected as 2 

[msec]. Following the design procedure, the coefficients of 

an integral sliding surface 1 is designed as    and 

   in (8) for locating double poles at  into the ideal 

sliding dynamics (9). The solution of (9) 
  predetermines 

the intermediate ideal sliding trajectory from  to   The 

corresponding constants in (11)  and  become 4 and 

2.715, respectively. By the results of Theorem 1, the error to 

the ideal sliding trajectory and its derivative,   and  , 

are bounded as    and    for a given  of the 

bound of the sliding surface. For a   maximum error, 

 is selected as 0.13. Now, the controller gains,   and  , 

are selected to be 20 and 10 for   and    by 

Theorem 2 which satisfy the condition (38) so that    

is sufficiently small with respect to the chosen   by 

theorem 1 in order to guarantee the prescribed error 

   to the sliding trajectory previously determined by 

the integral sliding surface 1.

For comparison, the simulations of the previous IVSS 

algorithm in [23] are carried out under the three different 

conditions, i.e., case 1:no modeling error, case 2: 10 [%] 

modeling error, and case 3: 10 [%] modeling error and 

1[kg] unknown payload. Fig. 3 shows the position error 

responses of the two links for the three cases by the 

previous IVSS algorithm in [23]. The corresponding phase 

trajectories are shown in Fig. 4. As can be seen in Fig. 3 

and Fig. 4, there are the overshoot problems as expected. 

Each control input of the link 1 and link 2 are shown in 
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그림 7 제안된 알고리듬에 의한 3가지 경우에 대한 2 링크의 위치 

오차 응답

Fig. 7 Position error responses of two links for three cases by 

proposed algorithm case 1 : no modeling error, case 2: 

10 [%] modeling error, case 3: 10 [%] modeling error 

and 1[kg] unknown payload

그림 8 제안된 알고리듬에 의한 3가지 경우에 대한 2 링크의 상 

궤적

Fig. 8 Phase trajectories of two links for three cases by 

proposed algorithm

그림 9 제안된 알고리듬에 의한 3가지 경우에 대한 링크 1의 제어

입력

Fig. 9 Control inputs of link 1 for three cases by proposed 

algorithm

Fig. 5 and Fig. 6, respectively. For illustrating the 

performances of the proposed algorithm, the simulations are 

carried out under same three cases. The position errors of 

two links and corresponding phase trajectories for the three 

그림 4 참고문헌 [23] 기존 IVSS에 의한 3가지 경우에 대한 2 링

크의 상 궤적

Fig. 4 Phase trajectories of two links for three cases by 

previous IVSS algorithm in [23]

그림 5 참고문헌 [23] 기존 IVSS에 의한 3가지 경우에 대한 링크 

1의 제어입력

Fig. 5 Control inputs of link 1 for three cases by previous 

IVSS algorithm in [23]

그림 6 참고문헌 [23] 기존 IVSS에 의한 3가지 경우에 대한 링크 

2의 제어입력

Fig. 6 Control inputs of link 2 for three cases by previous 

IVSS algorithm in [23]

case conditions are shown in Fig. 7 and Fig. 8, respectively. 

As can be seen, the three error outputs and phase trajectories 

are exactly identical and accurate to the predetermined 

sliding trajectories which means the high robustness of the 

suggested algorithm for all parameter uncertainties and 

payload variations as therorectically expected. And there is 

no reaching phase in Fig. 8 showing the curve line sliding 

surface from the initial state to the origin. The continuous 
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그림 10 제안된 알고리듬에 의한 3가지 경우에 대한 링크 2의 제

어입력

Fig. 10 Control inputs of link 2 for three cases by proposed 

algorithm

그림 11 다른 3 슬라이딩 면에 대한 2 링크의 위치 오차 응답 

Fig. 11 Position error responses of two links for different 

three sliding surfaces sliding surface 1:    and 

  , sliding surface 2:    and   , 

sliding surface 3:    and   

그림 12 다른 3 슬라이딩 면에 대한 2 링크의 상 궤적 

Fig. 12 Phase trajectories of two links for different three 

sliding surfaces

control inputs of link 1 and link 2 for the three cases are 

depicted in Fig. 9 and Fig. 10, respectively. Fig. 11 shows 

the position errors of two links for three sliding surfaces, 

i.e., sliding surface 1:previously designed surface, sliding 

surface 2: the coefficients    and    for double 

poles at  in the sliding dynamics, and sliding surface 

3:the coefficients    and    for double poles at 

-12. As can be seen in Fig. 11, the convergence speed of 

the position error trajectory can be changed according to 

the design of the integral sliding surface, (6), which means 

that the real output can be designed as desired. The 

corresponding phase trajectories are shown in Fig. 12 for 

the three integral sliding surfaces. From the results of the 

simulation studies until now, the advantages of the proposed 

algorithm can be pointed out in view of no reaching phase, 

no overshoot, the strong robustness, the predetermined 

output with designed accuracy, design phase separation, and 

easy changeability of output performance which has been 

illustrated.

4. Conclusions

In this paper, an improved integral variable structure 

regulation controller with the prescribed tracking accuracy to 

the predetermined sliding output is suggested for highly 

nonlinear rigid robot manipulators based on the special 

integral sliding surface and the efficient disturbance observer. 

In the proposed improved integral variable structure 

regulation controller, the special integral sliding surface is 

adopted for removing the reaching phase. The ideal sliding 

dynamics of the integral sliding surface is analytically 

obtained as the differential equation in matrix form. Hence 

by using the solution of the sliding dynamics, the sliding 

trajectory is predetermined from a given initial state to the 

desired reference without the reaching phase according to the 

choice of the integral sliding surface (performance design). 

The relationship between the maximum bound of the 

tracking error to the predetermined ideal sliding trajectory 

and the non-zero value of the sliding surface is derived 

analytically in Theorem 1 and its proof. The uniform bounded 

stability of the suggested algorithm is investigated in theorem 

2. Through the two theorems, it is proved that the 

predetermination of the output response with prescribed 

tracking accuracy is possible. Robot manipulators can be 

controlled to follow the predetermined ideal sliding trajectory 

within the prescribed accuracy for all the modeling errors 

and payload variations in the proposed regulation control. The 

usefulness of the proposed algorithm has been demonstrated 

by the simulations about the regulation position controls of a 

two-link robot under parameter uncertainties and payload 

variations with the example designs. The advantages of the 

proposed algorithm can be pointed out in view of no 

reaching phase, no overshoot, strong robustness with 

prescribed accuracy, the predetermined output with designed 

accuracy, design phase separation and easy changeability of 

output performance, etc.
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