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Abstract - In this paper, an improved integral variable structure regulation controller is designed by using a special integral
sliding surface and a disturbance observer for the improved regulation control of highly nonlinear rigid robot manipulators
with prescribed output performance. The sliding surface having the integral state with a special initial condition is employed
in this paper to exactly predetermine the ideal sliding trajectory from a given initial condition to the desired reference
without any reaching phase. And a continuous sliding mode input using the disturbance observer is also introduced in order
to effectively follow the predetermined sliding trajectory within the prescribed accuracy without large computation burden.
The performance of the prescribed tracking accuracy to the predetermined sliding trajectory is clearly investigated in detail
through the two theorems, together with the closed loop stability. The design of the proposed regulation controller is
separated into the performance design and robustness design in each independent link. The usefulness of the algorithm has
been demonstrated through simulation studies on the regulation control of a two-link robot under parameter uncertainties

and payload variations.
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1. Introduction

In servo control, three fundamental problems are the
point-to-point(regulation) control problem, tracking problem
(trajectory following), and mixed problem. The regulation
problem is concerned with moving control objects from a
point to another. While the controllers for the regulation
problem are required to provide a small positioning error and
superior regulation. In the tracking control, control objects
must be moved along the desired trajectory with the same
initial position as that of plants. Particularly, the mixed
problem is the tracking problem with the severely different
initial position of plants from that of planned trajectory in
which the features of both regulation and tracking problems
exist. The regulation, tracking, and mixed problems are very
important in many mechanical systems such as robot
manipulators, machining systems, tracking antennas etc.

These three control problems may be combined in practical
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fields. Among them, the regulation control problem of robot
manipulators is the theme of this paper.

A great deal of the researches on the control of highly
nonlinear rigid robot manipulators has been reported in
order to improve the performance of controllers and to
extend the application fields of robot manipulators [1]. There
are several approaches to attempt to obtain the desired
performances such as decentralized PID [2, 3], optimal
control, state feedback control(linear techniques until now),
computed torque method [4, 7, 8], adaptive control [9, 10],
sliding mode control [11-21, 27], and others [22-26]
(nonlinear techniques). Each method has its merits and
shortcomings. In the model based methods [5, 6, 20] among
them, specially, all of highly nonlinear dynamics models are
taken into account to calculate the control input which is a
hard task in view of the computation time of the process for
controllers, which needs the robustness property for
controllers against all the modeling errors. In order to obtain
the robustness against parameter variations and uncertainties,
the variable structure system(VSS) with the sliding mode
control(SMC) for robot manipulators has been studied by
many researchers [11-21, 27]. The strong robustness with the
simple control structure can be obtained in spite of the

Copyright © The Korean Institute of Electrical Engineers 103
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non—Commercial License (http://creativecommons.org/
licenses/by-nc/3.0/)which permits unrestricted non—-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



Mo|ete=2X| 677 15 20184 1€

existence for an acceptable modeling error and unknown
payload by using the sliding mode. The other advantages of
a SMC are that the almost output performance can be
predetermined by choosing the sliding surface. The first
application of SMC to robot manipulator seems to be in the
work of Young [11] dealing with a set point regulation
problem. A modification of the Young's controller was
presented by Morgan [13]. Other SMCs of robot manipulators
may be found. However, the existing SMCs for robot
manipulators unfortunately have the problem of the reaching
phase in the regulation controls during the transient period.
Hence the whole output is not completely robust and it is
difficult to obtain accurate pre-information on the control
performance. Because of this reaching phase, the works
about the reacheability and convergence to the sliding
surface with finite time are reported. To increase the steady
state performance of controllers, an integral action with a zero
initial value is simply introduced to the variable structure
system, but which causes the inevitable overshoot problems
in the transient state as a side effect [23]. To alleviate
computation burden due to the nonlinear dynamics of
manipulators, the multi sampling technique is employed to the
inner and outer two loop control scheme(Lee and Kwon [24])
which results in the complexity of the analysis and design.
The neural network is considered for the control of robot
manipulators, it is good for static nonlinear dynamics but not
effective for the unknown payload and external disturbances
[25]. Using the fuzzy control, the set-point regulation of
robot manipulators with flexible joints is studied in [26].
Currently, the sliding mode control is applied to the tracking
and regulation control of medical surgery robots[27].

In [29], a continuous integral variable structure system
with the prescribed control performance is reported for the
regulation control of uncertain general linear plants.

In this paper, an integral variable structure regulation
controller with the prescribed accuracy to the predetermined
output is designed for highly nonlinear rigid robot
manipulators without the problems mentioned above. With
the proposed technique, the reaching phase is completely
removed by means of the integral sliding surface augmented
by the integral state with special initial value. The ideal
sliding dynamics of the integral sliding surface is analytically
obtained from a given initial point without the reaching
phase. The solution of the ideal sliding dynamics
predetermines the ideal sliding trajectory from a given initial
point to the desired reference. The relationship between the
value of the sliding surface and the error to the ideal sliding
trajectory is analyzed in Theorem 1. The continuous sliding
mode input based on the disturbance observer for efficient
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compensation of the nonlinear dynamics of robot
manipulators can derive robot manipulators to follow the
predetermined ideal sliding trajectory within the prescribed
accuracy. The calculation burden in control input is also
avoided by wusing the disturbance observer effectively
calculating the nonlinear dynamics of robot manipulators.
The stability of the closed loop system is investigated in
detail in Theorem 2. The results of Theorem 2 provide the
stable condition for control gains. Combing the results of
Theorem 1 and Theorem 2 gives rise to possibility of
designing the improved integral variable structure regulation
controller to guarantee the tracking error from the
predetermined sliding trajectory within the prescribed
accuracy. The usefulness of the algorithm has been
demonstrated through the simulations of the regulation
control of a two-link robot under parameter uncertainties

and payload variations.

2. An Integral Variable Structure Controller

2.1, State equation of robot manipulators

The motion equations of an n degree-of-freedom
manipulator can be derived using the Lagrange-Euler
formulation as

Hq(t),8) - qlt) + Dlg(t),q(t).¢) = 7(t) m

where J(q(t), ¢9)ER"™" is a symmetric positive definite
D(q(t).q(t).¢)ER" is called a smooth
generalized disturbance vector as follows:

inertia matrix,

D(Q(t)lJ(t)@):H( (t)uq( )1¢) (2)
+ Flg(t),q(t).0) + Gly(t),¢)

including the centrifugal and Coriolis terms H(q(t),q(t), ),
Coulomb and viscous or any other frictions Flq(t),q(t),0),
gravity terms G(q(t),¢), unknown pay loadand etc. where r
is an input vector, and q(t), q(t), and ¢(t)ER" are the
generalized position, velocity, and acceleration vectors,
respectively. The ¢ is the vector composed of the
parameters of robot manipulators (i.e. the masses, lengths,
offset angles, and inertia of links). An exact modeling of
physical robot dynamics is difficult because of the existence
of parameter uncertainties, unknown frictions, and payload
variations. In this study for the regulation problem, a

desired reference ¢,€R" is given from a current state and

q'd(f)fqd() 0 is satisfied. Let us define the state vector



X(t)eR™ in the error coordinate system for the improved
integral variable structure regulation controller as

X)) =[x") X)) )

where X,(t) and X,(t) are the trajectory errors and its

derivative as
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Then the state equation of robot systems for the
regulation control becomes

X(t) - 7(t) 5)

[gé] ~X(t)+[

where X(O):[%T—qr((])—izr(o)]T is a given initial condition.
For (5), a new improved integral variable structure regulation
controller will be designed through the two steps, design of
the integral sliding surface and choice of continuous control
input. And some analysis about the relationship between
the error to the sliding trajectory and the non-zero value
of the sliding surface and the closed loop stability will be
given in each step.

2.2 An integral sliding surface, its sliding trajectory, and
error analysis

First of all, let's define an integral-augmented sliding
surface vector s(t) be

s(t) =X, )+ K, - X, (t)+ K X,(t) (=0) ©)
where
%0 = X @ x,0 )

X,(0)=— IU(;I(XZ (0)+ &, X, (0))

where K, and K, are diagonal coefficient matrices and
X,(t) is the integral of the error with the special initial
condition for removing the reaching phase by means of
making the integral sliding surface be zero at t=0, ie,
s(0)=0. Thus this integral augmented sliding surface
determines the ideal sliding mode dynamics to have an ideal
second order dynamics exactly from a given initial condition
to the origin in the error coordinate system without any
reaching phase, not a straight line of the conventional
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sliding surface through the origin. If X,(0)=0 in (7) such
as previous works [23] on the integral variable structure
systems, there exist still the reaching phase problems
because s(t) =0 at t=0 and an inevitable over shoot
problems as the side effect because the integral state
accumulated form the zero must re-converge to the zero.
The sliding dynamics from a given initial condition to the
origin defined by equation (6) is obtained from s(t)=0 as
follows:

=X, ()+K - X)) +K, - X () =0 ®
Then rewrite equation (8) into the state equation form

X)) =A-X@) Xx0)=x(0) ©)

where

X W=l ®)~¢"t) —q¢ "@)]" and
0 1}

2n X 2n —
AER A_[_KP_KU

(10

The solution of the state equation of the sliding
dynamics (9) q: and q.:ER” theoretically predetermines the
ideal sliding trajectory from a given initial state ¢(0) to the
desired reference ¢, defined by (6). Since det[A\—A]=

[/\2[—5-)\[(,”-1—[(;}, K, and K,ER""" can be chosen so that

all the eigenvalues of A have the negative real parts, which
guarantees the exponential stability of the system (9), then
there exists the positive scalar constants A and « such that

et < K- (11

where |||l is the induced Euclidean norm.
Now, define X,(t) and X,(¢) are the error from the ideal
sliding trajectory and its derivative, respectively as
Xo)=[x"0) X 0" (12)
=g ) —qe)” (g (t)—qt)"1"

If the sliding surface is zero for all time, naturally this
defined error and its derivative are also zeros. The sliding
surface may be not exactly zero if the input of the
improved integral variable structure regulation controller is
continuous. Hence the effect of the non-zero value of the
sliding surface to the error to the sliding trajectory is
analyzed in the following Theorem 1 as a prerequisite to
the main theorem.

Theorem 1: If the sliding surface defined by equation (6)
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satisties lls@)l<~ for any t=0 and X0 <~/k is
satistied at the initial time, then

X, (0l < ¢, 13)
Hz(t)“ <e¢

is satisfied for all ¢t =0 where ¢ and e, are the positive
constants defined as follows:

£
K

€, =

K
=K 62:7.[1+Z.ﬂ, 7=lK, K (14)

Proof: Let us define a new error vector as

< t * * T
k=] [liro-doar i0-d (15)
0
The sliding surface can be re-written as
s(t)=X,+K,- X, + K, - X, (16)

G E, XK, X
and can be re-expressed in a differential matrix from as
> 0
X:A~X+[ } -s(t) an

In (17), the sliding surface may be considered as the
bounded disturbance input, lls(t)ll <+. The solution of (17)
is expressed as

X(t) = et - )A((O)Jr/[:{e‘“ . m . s(t*T)}dT (18)

From the boundness of the sliding surface and (11), the

Euclidean norm of the vector X becomes

1=l - 1)+ et O] sl a9
0
< e 1RO+ f 1 1[0 st lar
0

K ~
=— '”H’(HX(O)—%) CKee "

I\
&=

-y
for all time, t =0. Since X,/ <X, the following equation
is obtained

K

X1l < — (20)

From the sliding surface, one can be simply obtained as

X,=s(t)-[K, K] -X @1
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If the norm operation is taken on both sides, (21) becomes
— K
X0 <~- (1+Z-;) (22)

which completes the proof of Theorem 1.

The above Theorem 1 implies that the error from the ideal
sliding trajectory and its derivative are uniformly bounded
provided the sliding surface is bounded for all time ¢ =0.
Using this result of Theorem 1, we can give the specifications
on the error from the ideal sliding trajectory being dependent
upon the value of the integral sliding surface, (6). In the
next section, we will design a variable structure regulation
controller with the efficient compensation which can
guarantee the boundedness of s(t), ie., lls(t)ll <~ for a given
v, then the error to the ideal sliding trajectory is bounded by
€, in virtue of Theorem 1.

2.3. Continuous input and its stability analysis

Robot manipulators activated by several servo motors are
subject to a variety of disturbances and uncertainties. The
robust control of highly nonlinear robot manipulators is
essential for developing robotics. It is often noted that the
generalized nonlinear disturbances, D(q(t),q(t),¢), must be
compensated for improving the control performance. As an
ideal control input in the sliding mode control, the equivalent
control of the augmented sliding surface (6) for the robot
system (5) is obtained from equation (8)

7., ()= Dig(t),4lt).0) + Hq(t).0) - (K, X, + K X,) (23)
The smooth generalized disturbance D(q(t), ¢(t), ¢) is
included in an equivalent control, 7, (¢). Since generally
this smooth generalized disturbance is very complex, a
direct calculation of the smooth generalized disturbance
from the model of robot manipulators results in the long
sampling time, limitations of the control performance, and
difficulties of the controller design for highly nonlinear
robot manipulators.

In this paper, using the efficient compensation method, so
called disturbance observer[22], we consider the following
continuous control input, 7(t)

mt) =7.(t)+7,(t) (24)

where 7.(t) is the compensation term for the smooth
generalized disturbance as well as the error of the nominal
matrix, is not the direct calculation from

Dig(t), q(t), ) in the model but the efficient estimation of

inertia



the generalized disturbance, D(q(t), ¢(t), ¢), only using the
nominal inertia matrix, J, of the model (1) and an available
acceleration information which can be calculated from the
speed information by means of the Euler method

() =rlt—h)—Jy - 4(t) 25)
=D(q(t), qt), ¢)+ AJq(t),0) - q(t)
—Jq(t), ¢) - Aqlt) — Ar(t)

where ;(t), AJqt),¢), Aq(t), and Ar(t) are defined by

a(0= 2 (26)
AJlq(t),0) = Jq(t),0) = Ty @1
Aqlt) = 4(6) = () (28)
Ar=1(t—h)—=(t) (29)

respectively, where AJ(¢(t), ¢) is the deviation between the
real inertia matrix and its nominal value, Aq(t) is the
acceleration information error to the real acceleration value,
Ar(t) is the control input delay error resulted from the
digital control, and h is the sampling time for digital
implementation. If the sampling time is sufficiently small
and control input is continuously implemented, then the
acceleration information error Ag(t) and the control input
delay error Ar(t) can be small. This disturbance observer
fails at the initial time because 7(t—h) is unknown, hence
only 7,(0) is once calculated by using the model of robots
with off-line in advance. The detail features of disturbance
observer is explained in the work of Komoda in [22]. The
second term in the right hand side of the equation (24) is
defined as

)=, t)+7 () (30)

where 7 (¢t) is the modified equivalent control for the

eq
compensated dynamics of equation (1), and is designed so
that the error dynamics of the controlled system has the
sliding surface dynamics defined by equation (9), which is
defined as

7,0 = Ty (K, - X+ K, - X)) (31)

As can be seen in (31), qu(t) is determined directly
according to the design of the integral sliding surface. The

7,(t) is the continuous feedback term of the integral sliding
surface for correcting the small compensation error as

follows:

2R m|Zaiole{o| 2fZ2folM MolE fIEh HME HE £2lold 2E Hof7|

Trans. KIEE. Vol. 67, No. 1, JAN, 2018

T ()= dy - (kg s(t) +h, - olt)} (32)
s(t)
t) =1~
AR NOTE;
where k,,, k,, and ¢ are the suitable positive constants as

the design parameters for the continuous control input.
After effectively compensating a almost part of nonlinear
dynamics of robot manipulators based on the disturbance
observer for avoiding a heavy computation burden, the
sliding control input is totally continuously implemented. As
the function of the disturbance observer, the effective
compensation for highly nonlinear generalized disturbances
and modeling errors of the inertia matrix will be studied. If
we apply the continuous input control torque given by
equation (24)-(32) to the robotic system (5), the following
equation is obtained

X,(t) == 7 q(t),0) - (AJq(t),6) - at) — Ar(t))+ Aqt)  (33)
=T Nq(t),) « Iy - [K, - X+ K, - X, +k - s(t)
+kx2'0'(t)

and the dynamics of s(t) is expressed in the following
simple form

s(t)=mn, (t) = [k = s(t)+k, - ot)] (34)

\1
where n, (t)€R" is the resulting disturbance vector given
by

n, (t) =n, (Aq(t),Ar(t),¢) (35)

=Jy' - Jqlt),) - Aqlt) + Tyt - Arlt)

From the equation (34), the 2n-th order original
regulation control problem is converted to the 2n-th
stabilization problems with three degree of freedoms k.,
k

2> and ¢ against the resultant disturbance n,(#) by means

of the proposed algorithm which implies the robustness
problems in the design of controllers. For some positive
constants ¢, and ¢, defined in (14), let the constant N be

defined as follows:

N=max|lln, (Aq(t),Ar(t),)l; (36)
q(t)EBe;q. (t)) and ¢(t)EBleyq, (1))

where the matrix norm is defined as the induced Euclidean
norm, and for a positive number ¢>0 and a vector AeR"
the boundary set defined by as

BleA) ={z€R = < ¢} (37

In equation (35), the resultant disturbances are mainly
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dependent on the acceleration information error and the
control input computation delay error and not system
uncertainties or modeling error of robot manipulators. The
disturbance observer can compensate for modeling errors of
the inertia matrix besides the smooth generalized disturbance
(2). Thus the SMC design is independent of the maximum
bound of modeling errors in the parameter space, but
dependent on only the resultant disturbance composed of the
acceleration information error and the control time delay due
to the digital implementation.

The stability property of the system (5) with the control
laws (24)-(32) will be stated in the next theorem:

Theorem 2: Consider the robot system with the control
algorithm given by the equations (24)-(32). Assume that for
some positive 7>0, [s(0)l <~ and IX(0)ll < v/« are satisfied
at the initial time ¢ =0, and if the gains &, and k , satisfy

.5 (38)

for a given 6>0 and N in (36), then the closed loop
control system is uniformly bounded(ie. the solution X is
uniformly bounded at the origin in the error coordinate
state space) for all time ¢ =0 until lls(t)l<n where 7 is
defined by

n=\a+8 —q (39)
oy =6/2+ (k, — N)/(2k )

o+ N
6] = k

x1

Proof: The proof is straightforward, first take Lyapunov
candidate function as

V(t) = ésfm - s(t) (40)

and differentiate with respect to time, it leads to

Vit)=s"(t) - 5(t) 1)

By the matrix inequality, (41) becomes

V) < sl - llny (Ol =lls ()l [k - sl 4k, - lo @] (42)
< sl - {N= [k, - s @l +E - lo @]}
kyy - ls(@)l

_ W{Hé(f)“Z +2q - Hb(t)‘l—ﬂl}

IA

If the gains k, and k satisfy the inequality (38)

Mt) <0 (43)
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at all + =0 as long as |s(t)ll =», which completes the proof
of Theorem 2.

Theorem 2 guarantees the uniform bounded stability of
the proposed continuous improved integral variable structure
regulation controller for robot manipulators. The smaller §
in control algorithm (32), the lower value of 5. The 5 can
be decreased by an increase of k, for a given ¢ and NV so
that n is sufficiently smaller than ~ the bound of the
sliding surface in Theorem 1(n<+). If the initial value of
the sliding surface is small(lls(0)ll < +) which is reasonable
in case of the known initial state of robot manipulators, the
feedback control (24)-(32) designed by Theorem 1 and
Theorem 2 maintains the bounded stability of the system
with the prescribed performance:

g(t)E Bleyiq. () and ¢(t)EBleyq, (t) (44)

which implies guaranteeing the prescribed tracking error ¢,
to the ideal sliding trajectory g¢,(t) predetermined by the
integral sliding surface from a given initial condition ¢(0) to
q,, in other words, guaranteeing the predetermined output
response with the prescribed accuracy. Fig. 1 shows the
structure of the proposed algorithm composed of the
compensation term, modified equivalent term, and continuous
feedback term of the integral sliding surface which is
relatively simple because of avoidance of large computation
burden and nature of the VSS. Thus the sampling time can
be as small as possible so that the acceleration information
calculated by Euler method and the delayed control input are
almostly exact to each real value, therefore, the maximum
value NV can be small. Therefore, a new SMC can be realized
effectively. And robot manipulators are controlled to follow
the predetermined sliding trajectory from ¢(0) to ¢, The

O+ 1®) Robot o
Manipulator q®

&
()

|
S(0) = X,(0) + KX, ()
+K, X, (0)

d

—

dt

() = T(t—h) - Jyg(t)

Disturbance Observer

Position Regulation Controller

I8 1 Ao FHE 71 X HEdold FMofr]
Fig. 1 Proposed integral variable structure regulation
controller



sliding trajectory is obtained by the solution of the sliding
dynamics of (9) in advance. Hence the output is predictable
with € accuracy. The design procedure of the proposed
sliding mode controller to guarantee the predetermined output
with prescribed accuracy is as follows: First, choose the
desired sliding surface defining the desired sliding dynamics
(9) which means the determination of the coefficients, K,
and K, and calculate the ideal sliding trajectory off-line
(performance design phase). Second, find the constants A and
k satisfying the equation (11). Third, determine the bound of
the sliding surface, v using (14) in Theorem 1 for a given
the accuracy of the tracking error to the sliding trajectory,

6. And finally design the gains, k., and k_,, in equation

X2’
(32) based on Theorem 2 so that the n is smaller than =
(robustness design phase). In the whole procedure, the design
does not need the information of maximum bound of system
parameter variations or uncertainties because of the efficient

on-line compensation.

3. Design Examples and Simulation Studies

Numerical simulations are performed to show the accurate
and robust control property of the proposed algorithm. The
dynamic model of a SCARA-type two degree-of-freedom
manipulator shown in Fig. 2 used in this simulation is as

follows:
1 4 1 1
r —m, +—-my,+m, G —m,+—-myG,
1 _2 |3 3 3 2 %
i 1 1 1 & 45)
2
3 M + 5 My G, 3
1 -2 -
) 757”252{1177”252’11’12
+I°- 1 Y
Emzsz‘h
1 1
§m1gq+§ngQ2+m29q
+l- .
Emﬂcu

I8 2 A7 € 2 AFRE HUEH0lE
Fig. 2 SCARA - type two degree-of freedom manipulator
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where C

Y, S, and G, imply cos(g), sin(g) and cos(q +g),
respectively. The manipulator parameters are m; = my =
0.782[kg], / = 0.23[m], and g = 9.8[m/sec?].

The reference command ¢, =[90 —60 ]7 is given for the
two links as an example. The sampling time is selected as 2
[msec]. Following the design procedure, the coefficients of
an integral s/ding surface 1 is designed as K, =12 and
K, =36 in (8) for locating double poles at —6 into the ideal
sliding dynamics (9). The solution of (9) ¢, predetermines
the intermediate ideal sliding trajectory from ¢(0) to g, The
corresponding constants in (11) A and & become 4 and
2.715, respectively. By the results of Theorem 1, the error to
the ideal sliding trajectory and its derivative, Z and E
are bounded as ¢ =1.473y and €, =57y for a given v of the
bound of the sliding surface. For a ¢, =0.2° maximum error,
7 is selected as 0.15 Now, the controller gains, k , and k,,
are selected to be 20 and 10 for §=0.05 and N=5 by
Theorem 2 which satisfy the condition (38) so that n=10.037
is sufficiently small with respect to the chosen y=0.13 by
theorem 1 in order to guarantee the prescribed error
€ =02" to the sliding trajectory previously determined by
the integral s/iding surface 1.

For comparison, the simulations of the previous IVSS
algorithm in [23] are carried out under the three different
conditions, ie., case I:no modeling error, case 2 10 [%]
modeling error, and case 3 10 [%] modeling error and
1[kg] unknown payload. Fig. 3 shows the position error
responses of the two links for the three cases by the
previous IVSS algorithm in [23]. The corresponding phase
trajectories are shown in Fig. 4. As can be seen in Fig. 3
and Fig. 4, there are the overshoot problems as expected.
Each control input of the link 1 and link 2 are shown in

Fasitian Error
o

T8 3 FES [23] 71E 1VSsol Qg 37HK] Aol tigt 2
g39] QA @At 8%

Fig. 3 Position error responses of two links for three cases
by previous IVSS algorithm in [23] case I:no
modeling error, case 2= 10 [%] modeling error, case 3:
10[%] modeling error and I /kg/ unknown payload
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Fig. 5 and Fig. 6,
performances of the proposed algorithm, the simulations are

respectively. For illustrating the

carried out under same three cases. The position errors of
two links and corresponding phase trajectories for the three

Link 2
100 |

Spaed Emor
s}

"y

S,

P

o
(=}

)
tu}
t=}

&
o
=}

T Link 1

£
2

40 20 i} 20 40 50 a0 100
FPosition Errar

9 4 FES [23] 7IE vSSol QIS 37HA]
9] é} HA

Fig. 4 Phase trajectories of two links for three cases by
previous IVSS algorithm in [23]

Aol tat 2 8

B0

== case 1
= case 2
case 3 | 7

R - & i
o (=] o o

Control Input 1 [Nm]

=}
T

-10

0 02 04 0B 08 1 12 14 18 18 2
Time [sec]

I8 5 FUES [23] 7I1& IVSSoll 9t 371K A0 thst g3
19] Ao

Fig. 5 Control inputs of link 1 for three cases by previous
IVSS algorithm in [23]

Contral Input 2 [Nim]

et

Ivssol olgt 37A] gl tigt g

S [23] 71E
29| Kﬂoi%‘fjﬁ

Fig. 6 Control inputs of link 2 for three cases by previous
IVSS algorithm in [23]

I3 6 FIET

110

case conditions are shown in Fig. 7 and Fig. 8, respectively.
As can be seen, the three error outputs and phase trajectories
are exactly identical and accurate to the predetermined
sliding trajectories which means the high robustness of the
suggested algorithm for all parameter uncertainties and
payload variations as therorectically expected. And there is
no reaching phase in Fig. 8 showing the curve line sliding
surface from the initial state to the origin. The continuous
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Fig. 7 Position error responses of two links for three cases by
proposed algorithm case 7 : no modeling error, case 2
10 [%] modeling error, case 3: 10[%] modeling error

and 7/kg/ unknown payload
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Fig. 9 Control inputs of link 1 for three cases by proposed
algorithm
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Fig. 12 Phase trajectories of two links for different three
sliding surfaces

control inputs of link 1 and link 2 for the three cases are
depicted in Fig. 9 and Fig. 10, respectively. Fig. 11 shows
the position errors of two links for three sliding surfaces,
ie., sliding surface I:previously designed surface, s/ding
surface 2. the coefficients X, =16 and K, =64 for double
poles at —8 in the sliding dynamics, and s/ding surface
S:the coefficients K, =24 and K, =144 for double poles at
-12. As can be seen in Fig. 11, the convergence speed of
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the position error trajectory can be changed according to
the design of the integral sliding surface, (6), which means
that the real output can be designed as desired. The
corresponding phase trajectories are shown in Fig. 12 for
the three integral sliding surfaces. From the results of the
simulation studies until now, the advantages of the proposed
algorithm can be pointed out in view of no reaching phase,
no overshoot, the strong robustness, the predetermined
output with designed accuracy, design phase separation, and
easy changeability of output performance which has been
illustrated.

4. Conclusions

In this paper, an improved integral variable structure
regulation controller with the prescribed tracking accuracy to
the predetermined sliding output is suggested for highly
nonlinear rigid robot manipulators based on the special
integral sliding surface and the efficient disturbance observer.
In the proposed improved integral variable structure
regulation controller, the special integral sliding surface is
adopted for removing the reaching phase. The ideal sliding
dynamics of the integral sliding surface is analytically
obtained as the differential equation in matrix form. Hence
by using the solution of the sliding dynamics, the sliding
trajectory is predetermined from a given initial state to the
desired reference without the reaching phase according to the
choice of the integral sliding surface (performance design).
The relationship between the maximum bound of the
tracking error to the predetermined ideal sliding trajectory
and the non-zero value of the sliding surface is derived
analytically in Theorem 1 and its proof. The uniform bounded
stability of the suggested algorithm is investigated in theorem
2. Through the two theorems, it is proved that the
predetermination of the output response with prescribed
tracking accuracy is possible. Robot manipulators can be
controlled to follow the predetermined ideal sliding trajectory
within the prescribed accuracy for all the modeling errors
and payload variations in the proposed regulation control. The
usefulness of the proposed algorithm has been demonstrated
by the simulations about the regulation position controls of a
two-link robot under parameter uncertainties and payload
variations with the example designs. The advantages of the
proposed algorithm can be pointed out in view of no
reaching phase, no overshoot, strong robustness with
prescribed accuracy, the predetermined output with designed
accuracy, design phase separation and easy changeability of
output performance, etc.
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