• Title/Summary/Keyword: Six-DOF

Search Result 108, Processing Time 0.027 seconds

Measurement of a Six-degree-of-freedom Dynamic Characteristics using Angle Sensor-Implemented Grating Interferometry (회절격자 간섭계를 이용한 초정밀 스테이지의 6 자유도 운동 특성 측정)

  • Lee, Cha-Bum;Kim, Gyu-Ha;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.906-912
    • /
    • 2012
  • This paper presents the new method for a six-degree-of-freedom (DOF) motion measurement and those dynamic characterizations in an ultraprecision linear stage using angle sensor-implemented grating interferometry. It consists of a diffractive optical element, a corner cube, four separate two-dimensional position sensitive detectors, four photodiodes and auxiliary optics components. From the previous study, it was confirmed that the proposed optical system could measure a six-DOF motion error in a linear stage. In this article, six-DOF motion dynamic characteristics of the stage were investigated through the step response and with respect to the conditions with a different speed of a slide table. As a result, the natural frequency and damping ratio according to a six-DOF direction was obtained. Also, it was seen that the speed of slide table had an significant effect on a six-DOF displacement motion, especially, X, which was considered as the effect of friction mechanism and local elastic mechanical deformation in a slide guide.

A multivariable controller design of 6 DOF motion simulator (6자유도 운동재현기의 다변수 제어기 설계)

  • 이호영;강지윤;이교일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.449-454
    • /
    • 1994
  • The Stewart Platform is one example of a motion simulator which generater 6DOF motion in space by six actuators in parallel. The presented control methrol of 6DOF motion simulator is generally classified into two types, one is SISO and the other is MIMO control type. The SISO control can't compensate for external load variation and different dynamic behavior of 6DOF motion, trerefore this type don's control motion precisely. On the other hand, the MIMO control compensates for a interference of 6DOF motion because MIMO controller is designed with 6DOF motion simulator synamics. But MIMO control of motion simulator has a complexity of 6DOF displacement feedback, because in oder to obtain feedback value we must solve the forward kinematics using measurement of cylinder length or design a state estimator, unless measurement of 6DOF displacement is possible. In this paper, a multivariable controller using H .inf. optimal control theory is designed to consider a interference of 6DOF motion and to obtain robust,precise control of system. Also in order to solve the mentioned problem of MIMO control, this paper presents a modified MIMO control model which control 6DOF motion by using feedback of measurement od cylinder length.

  • PDF

A study on multi degrees of freedom fine motion measurement for milli-structure (밀리구조물의 다자유도 미세 변위 측정법에 대한 연구)

  • 배의원;김종안;김수현;곽윤근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.39-42
    • /
    • 2000
  • Cutrent technological development toward miniaturization requires smaller components. These components usually generate complex multi-DOF motions other than simple 1-DOF motlon. Therefore it is essential to develop measurement methodology for 6-DOF motions. In this paper, a new 6-DOF measurement system for milli-struchlre is presented. This methodology basically employs the Optical Beam Deflection Method (OBDM) with a diffraction grating. A laser beam is emitted toward the difliaction grating which could be attached on the surface of a milli-structue and the incident ray is dif'||'&'||'acted in several directions. Among these difliacted beams, $0^{th}$ and $\pm$ $1^{th}4" order difkicted rays are detected by 4 Quadrant Photodiodes. From coordinate values fram each detector, we can get information for 6-DOF motions with lineariration method, Required resolutions for milli-struchue measurement are suh-micrometer in translation and arcsec in rotation. Experimental results indicate that proposed system has possibility to satisfy this requirement.

  • PDF

Stiffness Analysis of a Low-DOF Parallel Manipulator including the Elastic Deformations of Both Joints and Links (ICCAS 2005)

  • Kim, Han-Sung;Shin, Chang-Rok;Kyung, Jin-Ho;Ha, Young-Ho;Yu, Han-Sik;Shim, Poong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.631-637
    • /
    • 2005
  • This paper presents a stiffness analysis method for a low-DOF parallel manipulator, which takes into account of elastic deformations of joints and links. A low-DOF parallel manipulator is defined as a spatial parallel manipulator which has less than six degrees of freedom. Differently from the case of a 6-DOF parallel manipulator, the serial chains in a low-DOF parallel manipulator are subject to constraint forces as well as actuation forces. The reaction forces due to actuations and constraints in each limb can be determined by making use of the theory of reciprocal screws. It is shown that the stiffness model of an F-DOF parallel manipulator consists of F springs related to the reciprocal screws of actuations and 6-F springs related to the reciprocal screws of constraints, which connect the moving platform to the fixed base in parallel. The $6{times}6$ stiffness matrix is derived, which is the sum of the stiffness matrices of actuations and constraints. The six spring constants can be precisely determined by modeling the compliance of joints and links in a serial chain as follows; the link can be considered as an Euler beam and the stiffness matrix of rotational or prismatic joint can be modeled as a $6{times}6$ diagonal matrix, where one diagonal element about the rotation axis or along the sliding direction is zero. By summing the elastic deformations in joints and links, the compliance matrix of a serial chain is obtained. Finally, applying the reciprocal screws to the compliance matrix of a serial chain, the compliance values of springs can be determined. As an example of explaining the procedure, the stiffness of the Tricept parallel manipulator has been analyzed.

  • PDF

A 4-Node Non-conforming Flat Shell Element with Drilling DOF (면내회전자유도를 가지는 4절점 비적합 평면쉘의 개발)

  • 최창근;이필승
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.27-34
    • /
    • 1998
  • A versatile flat shell element has been developed by combining a membrane element with drilling degree-of-freedom and a plate bending element. This element is formulated by the enhanced displacement field with the additional non-conforming displacement modes. Thus the element possesses six degrees-of-freedom (DOF) per node which permits an easy connection to other six DOF elements as well as the improvement of the element behavior. In plate bending part, this element is established by the combined use of the addition of non-conforming modes, the reduced (or selective) integration scheme, and the construction of the substitute shear strain fields. The achieved improvement may be attributable to the fact that the merits of these individual techniques are merged into the new element in a complementary manner. In membrane part, this element shows better membrane behavior as the nonconforming displacement mode is added to drilling mode.

  • PDF

Design and Tracking Control of 4-DOF Motion Platform for Bicycle Simulator (자전거 시뮬레이터용 4자유도 운동판의 설계 및 추적 제어)

  • 성지원;신재철;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.235-240
    • /
    • 2001
  • A four degrees of freedom (dof) motion platform for bicycle simulator is developed. The motion platform, capable of the vertical linear and three angular motions, is designed based on analysis of the typical motion characteristics revealed by the existing six dof bicycle simulator. The platform essentially consists of two parts: the three dof parallel manipulator, consisting of a moving platform, a fixed base and three actuators, and the turntable to generate the yaw motion. The nonlinear kinematics and dynamics of the three dof parallel manipulator with multiple closed loop chains are analyzed for tracking control of the motion platform. The tracking performances of the three control schemes are experimentally compared: the computed torque method (CTM), the sliding mode control (SMC) and the PD control. The CTM and SMC, incorporated with the system dynamics model, are found to be equally better in performance than the PD controller, irrespective of the presence of external disturbance.

  • PDF

Design and Fabrication of Six-Degree of Freedom Piezoresistive Turbulent Water Flow Sensor

  • Dao, Dzung Viet;Toriyama, Toshiyuki;Wells, John;Sugiyama, Susumu
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.191-199
    • /
    • 2002
  • This paper presents the design concept, theoretical investigation, and fabrication of a six-degree of freedom (6-DOF) turbulent flow micro sensor utilizing the piezoresistive effect in silicon. Unlike other flow sensors, which typically measure just one component of wall shear stress, the proposed sensor can independently detect six components of force and moment on a test particle in a turbulent flow. By combining conventional and four-terminal piezoresistors in Si (111), and arranging them suitably on the sensing area, the total number of piezoresistors used in this sensing chip is only eighteen, much fewer than the forty eight piezoresistors of the prior art piezoresistive 6-DOF force sensor.

An Ultraprecise Machining System with a Hexapod Device to Measure Six-Degree-Of-Freedom Relative Motions Between The Tool And Workpiece

  • Oiwa, Takaaki
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.3-8
    • /
    • 2007
  • A machining system that generates accurate relative motions between the tool and workpiece is required to realize ultra precise machining or measurements. Accuracy improvements for each element of the machine are also required. This paper proposes a machining system that uses a compensation device for the six-degree-of-freedom (6-DOF) motion error between the tool and workpiece. The compensation device eliminates elastic and thermal errors of the joints and links due to temperature fluctuations and external forces. A hexapod parallel kinematics mechanism installed between the tool spindle and surface plate is passively actuated by a conventional machine. Then the parallel mechanism measures the 6-DOF motions. We describe the conception and fundamentals of the system and test a passively extensible strut with a compensation device for the joint errors.

A Study On The Development Of A Miniature Biped Robot Using Sensor (센서를 이용한 소형 이족 보행 로봇의 개발에 관한 연구)

  • Jung, Chang-Youn;Lee, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2433-2435
    • /
    • 2002
  • The purpose of this paper is to introduce a case study of developing a miniature biped robot. The biped robot has a total of twenty-one degrees of freedom(DOF) ; There are two legs which have six DOF each, two arms which have three DOF each and a waist which has three DOF. RC servo-motors were used as actuators. We have developed motor controller, sensor controller and ISA-interface card. Motor controller, PWM generator, can control eight motors Sensor controller is connected to eight FSR(Force Sensing Resistors). For high level controller communicate with low level controller, ISA-interface card has developed. For the stable walking, CMAC(Cerebellar Model Articulation Controller) neural network algorithm is applied to our system CMAC is robust at noise.

  • PDF

Development of a 2D isoparametric finite element model based on the layerwise approach for the bending analysis of sandwich plates

  • Belarbia, Mohamed-Ouejdi;Tatib, Abdelouahab;Ounisc, Houdayfa;Benchabane, Adel
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.473-506
    • /
    • 2016
  • The aim of this work is the development of a 2D quadrilateral isoparametric finite element model, based on a layerwise approach, for the bending analysis of sandwich plates. The face sheets and the core are modeled individually using, respectively, the first order shear deformation theory and the third-order plate theory. The displacement continuity condition at the interfaces 'face sheets-core' is satisfied. The assumed natural strains method is introduced to avoid an eventual shear locking phenomenon. The developed element is a four-nodded isoparametric element with fifty two degrees-of-freedom (52 DOF). Each face sheet has only two rotational DOF per node and the core has nine DOF per node: six rotational degrees and three translation components which are common for the all sandwich layers. The performance of the proposed element model is assessed by six examples, considering symmetric/unsymmetric composite sandwich plates with different aspect ratios, loadings and boundary conditions. The numerical results obtained are compared with the analytical solutions and the numerical results obtained by other authors. The results indicate that the proposed element model is promising in terms of the accuracy and the convergence speed for both thin and thick plates.