
1. INTRODUCTION 
 

A Parallel manipulator typically consists of a moving 
platform that is connected to a fixed base by several serial 
chains, called limbs. In general, parallel manipulators have 
some advantages of high speed, payload, accuracy and 
stiffness over serial manipulators. Among various parallel 
manipulators, the 6-DOF Stewart-Gough platform has 
attracted the most interests of researchers and industries, since 
all the linear actuators are under only tensional/compressive 
forces. [1,2] However, the manipulator has some disadvantages 
such as complex forward kinematics, small workspace, and 
requiring many parts.  

To overcome the above shortcomings, parallel mani- 
pulators with fewer than six degrees of freedom have been 
investigated.[3~12] Low-DOF parallel manipulators have the 
advantages of relatively simple forward-kinematics, larger 
workspace, lower inertia, and requiring less parts over 6-DOF 
counterparts. A low-DOF parallel manipulator costs less than 
a 6-DOF counterpart and, hence, it may be more economic to 
employ such manipulators for applications for which 6-DOF is 
not necessary. Among low-DOF parallel manipulators, 3-DOF 
translational parallel manipulators[6~9] and 3-DOF rotational 
parallel manipulators[10,11] have been focused.  

In the first design stage of manipulators requiring high 
speed, accuracy, and stiffness, the stiffness analysis may be 
very essential and the most important step. For 6-DOF parallel 
manipulators, various methods of the stiffness analysis have 
been published.[12~14] However, the stiffness analysis for 
low-DOF parallel manipulators has been a little investigated. 
Among the research results, Zhang and Gosselin[15~18] analyzed 
low-DOF parallel manipulators with passive constraining 
limbs. However, the method of using virtual joints is not 
systematic. It is well known that the Jacobian and stiffness 

matrices of a 6-DOF parallel manipulator are 6×6 matrices. 
However, it is not clear as to what is the best way to express 
the Jacobian and stiffness matrices of a low-DOF parallel 
manipulator. For the Jacobian matrix, Joshi and Tsai[19] 
presented that a 6×6 Jacobian matrix including actuations and 
constraints should be used in order to analyze all the 
singularities and to prevent an erroneous design.[20,21] Since 
the stiffness matrix is basically based on the Jacobian matrix, 
the stiffness matrix should contain the information on the 
stiffness due to actuations and constraints and should be a 6×6 
matrix even in a low-DOF parallel manipulator. 

In this work, the reciprocal screws of actuations and 
constraints are determined by using the theory of reciprocal 
screws. The reciprocal screws are the reaction forces due to 
actuations and constraints, which eventually result in the 
infinitesimal deflections of joints and links in a serial chain. 
Using the 6×6 Jacobian matrix from the statics relation, the 
stiffness matrix becomes the sum of the stiffness matrices of 
actuations and constraints. The joint stiffness values can be 
precisely determined by modeling the compliance of joints 
and links in each serial chain. The stiffness values of a joint 
can be precisely determined by using the analytic or 
experimental data of bearings, and the stiffness matrix for 
revolute and prismatic joints becomes a 6×6 diagonal matrix, 
where one diagonal element about the rotation axis or along 
the sliding direction is zero. The links in a serial chain are 
modeled as Euler-Bernoulli beams. Summing the elastic 
deformations in all the parts, the total compliance matrix of a 
serial chain can be obtained. Since the total compliance matrix 
is generally singular, it is impossible to get the inverse matrix. 
Instead, multiplying the total compliance matrix by the 
reciprocal screws yields finite deflections about or along the 
reciprocal screws. From the finite deflections, the compliance 
values of springs can be obtained.  
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2. STATICS ANALYSIS 
 

In this work, a low-DOF spatial parallel manipulator with 
F-DOF ( 63 <≤ F ) is considered. As shown in Fig. 1, it is 
assumed that the moving platform is constrained by m  
number of serial-kinematic chains and each limb may have at 
most one actuator. The limbs having an actuator are indexed 
first such as Fi ,,2,1 K= , and the other limbs without 
actuator are indexed as mFFi ,,2,1 K++= . Let the 
degree-of-freedom associated with all the joints of the ith limb 
be defined as the connectivity, iC , of that limb.[22,23] Each 
limb constrains the moving platform by iC−6  number of 
constraints, and the total number of all the independent 
constraints should be six. 

For the statics analysis, let us consider the case that an 
external wrench is applied on the moving platform. For a 
low-DOF parallel manipulator, the wrench is equilibrated with 
the reaction forces by F number of actuators and 6-F number 
of constraints. In order to determine the reaction forces by 
actuators and constraints, we will use the theory of reciprocal 
screws.[22,24,25] First, the instantaneous twist of the moving 
platform needs to be expressed as a linear combination of the 
unit twists of 1-DOF joints consisting of each limb by, [26] 
 

∑
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ˆˆ ST θ&        mi ,,2,1for  K= (1) 

 
where PT̂  and Ŝ  denote the twist of the moving platform 
and the unit twist expressed in the axis coordinate,[24] and ij ,θ&  
denotes the joint rate. The subscripts, i  and j  denote the 
limb number and the joint number in the ith limb, respectively. 

As the follows, the reciprocal screws in the ith limb can 
be determined. [19] First, those screws that are reciprocal to all 
the joint screws form a )6( iC−  reciprocal screw system, 
defined as the reciprocal screws of constraints. Let ikc ,,ŝ  
denote the kth reciprocal screw of constraints of the ith limb. 
Taking the orthogonal product of both sides of Eq. (1) with 
each of the )6( iC−  reciprocal screws of constraints, 

)6( iC−  reciprocal screws of constraints can be identified by 
 
 

 
Fig. 1 Structure of an F-DOF parallel manipulator. 

(Note: a: active joint, p: passive joint) 
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where ŝ  denotes the unit screw expressed in the ray 
coordinate.[24] 

Second, when the actuators of the ith limb are locked, the 
dimension of the reciprocal screw system increases by n  
( 1or  0=n ). Those screws that are reciprocal to all the passive 
joint screws form a )6( nCi +−  reciprocal screw system. 
Clearly, this )6( nCi +−  reciprocal screw system includes 
the )6( iC−  reciprocal screw system identified earlier as a 
subset. Hence, additional reciprocal basis screws that are 
reciprocal to all the passive joint screws and don’t belong to 
the )6( iC−  system are defined as reciprocal screws of 
actuations, ia ,ŝ , and can be determined by 
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where pT ′ˆ  is a linear combination of the unit twists of 
passive joints.  

From the procedure, we can determine six independent 
reciprocal screws. Ignoring the gravity, an external wrench is 
equilibrated with the reaction forces by actuators and 
constraints along the reciprocal screws given by 
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where the wrench expressed in the ray coordinate is 

TTT ],[ˆ mfw =  when f  and m  denote the force and 
moment vectors at the end-effector. aτ  and cτ  denote the 
magnitudes of the reaction forces by actuators and constraints, 
respectively. Eq. (4) may be rewritten in the forms of matrices 
and vectors by 
 

τττw JJJ ccaa =+=ˆ  (5) 
 
where the Jacobian matrix of actuations and the Jacobian 
matrix of constraints are given by[19] 
 

[ ] F
Faaa RJ ×∈= 6

,1,
ˆˆ ss L  and (6) 
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The overall Jacobian matrix is obtained by 
 

[ ] 66×∈= RJJJ ca . (8) 
 
In Eq. (5), 1

,1, ], ,[ ×∈= FT
Faaa Rττ Lτ  denotes the actuator vector, 

1)6(
,6,,1,1,6,1,1, ],,,,,,[ ×−

−− ∈= FT
miCcmciCccc Rττττ LLLLτ  denotes 

the reaction vector by constraints, and  16] ,[ ×∈= RTT
c

T
a τττ  is 

the overall joint vector. 
 

3. STIFFNESS ANALYSIS 
 
In this paper, it is assumed that the moving platform is 

rigid and the major sources of compliance come from the 
flexibility of the bearings, links, mechanical transmission 
mechanisms and control systems.[22] The reciprocal screws 
may be classified into three categories; zero-pitch reciprocal 
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screw, infinitesimal-pitch reciprocal screw, and finite-pitch 
reciprocal screw expressed respectively by 
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where s  is the unit directional vector of a screw, r  is the 
position vector from the reference frame to a screw, and h  is 
the pitch of a screw. The physical meanings of zero- and 
infinite-pitch reciprocal screws are pure force and pure couple. 
Although the reciprocal screw may be a nonzero finite-pitch 
screw in a special case, it is not considered in this work. 

When pure force is exerted on a limb with some 
compliance, it generates infinitesimal translational motion 
along the line of the force. On the other hand, when pure 
couple is applied to a limb, it generates infinitesimal rotational 
motion about the axis of the couple. Hence, the infinitesimal 
translational and rotational motions can be modeled as the 
deflection of a linear spring placed along the line of the force, 
and the deflection of a rotational spring with the axis of the 
couple, respectively. As seen in the previous section, it can be 
modeled that the moving platform is supported by six 
independent springs, since there exist six reciprocal screws in 
a general case. Among the springs, F springs are related to the 
actuations and 6-F springs are related to the constraints. Let 

iak , ),,2,1( Fi L=  be defined as the spring constant of 
actuations, and ick , )6,,1( L+= Fi  be defined as that of 
constraints. The relation between the force and deflection of 
springs can be expressed by 
 

[ ] aaa k qτ δ= , and [ ] ccc k qτ δ=  (10)
 
where [ ]ak  and [ ]ck  denote the diagonal matrices with 
the diagonal elements of iak ,  and ick , , respectively, and 

aqδ  and cqδ  are the infinitesimal displacement vectors of 
actuations and constraints. By applying the principle of virtual 
work, the following equation can be obtained by 
 

c
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where TTT ],[ˆ θxD δδδ =  denotes the infinitesimal twist 
expressed in the axis coordinate, when xδ  and θδ  are the 
infinitesimal translational and rotational displacements at the 
end-effector. Substituting Eq. (5) into Eq. (11) yields 
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Since Eq. (12) is valid for any value of aτ  and cτ , one can 
write 
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cc J= . (13)
 
Substituting Eq. (10) into Eq. (11) gives 
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Using Eq. (13), Eq. (14) can be rewritten by 
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Since Eq. (15) is also valid for any value of D̂δ , the stiffness 

mapping between applied wrench and infinitesimal twist at the 
end-effector is obtained in terms of the stiffness matrix, K  
 

Dw ˆˆ δK=  (16)
 
where the overall stiffness matrix is obtained with the sum of 
the stiffness matrices of actuations and constraints given by 
 

T
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Using the overall Jacobian matrix, the overall stiffness matrix 
may be simplified by 
 

TJkJK ][=  (18)
 

where [ ]ca JJJ =  and 
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It is noted that the stiffness matrix for a low-DOF parallel 
manipulator has a similar form with a full-DOF parallel 
manipulator.[12-13] The stiffness matrix of a full-DOF parallel 
manipulator is expressed only with the stiffness matrix of 
actuations, since any constraints do not exist. On the other 
hand, the stiffness matrix of a low-DOF parallel manipulator 
should be expressed with the stiffness matrices of actuations 
and constraints. Hence, the intuitive approach of using a 
partial stiffness matrix may lead to erroneous results. 
 

4. COMPLAINCE MODELING OF SERIAL CHAINS 
 

In this section, we present a method to determine the 
spring constants related to actuations and constraints in a serial 
chain. In deriving the compliance model of a serial chain, the 
flexibility in joints and links is considered. First, without loss 
of generality, only revolute and prismatic joints are considered, 
since a spherical joint is equivalent to three intersecting 
non-coplanar revolute joints, a universal joint is equivalent to 
two intersecting revolute joints, a cylindrical joint is 
equivalent to the sum of a revolute joint and a prismatic joint 
along the revolute joint axis, and so on. The compliance 
matrix of a 1-DOF joint is given by 
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where the axis of a joint is aligned with the z-axis of a local 
frame, and the radial direction of a joint is placed on the xy 
plane of a local frame as shown in Fig. 2. The subscripts, l  
and θ  denote the linear and rotational stiffnesses, and the 
following subscripts, a  and r  denote the axial and radial 
directions. It is noted that ∞=ac ,θ , for a revolute joint, and 

∞=alc , , for a prismatic joint. 
Second, the links in a serial chain are considered as 

Euler-Bernoulli beams, implying that the shear effect and 
inertia of rotation of the beam section are ignored, and beam 
sections stay plane and perpendicular to the neutral axis. 
Forces and moments elastically deform the tip of each link. 
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The elastic deformations at the tip of a link are written as 
follows:  
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where A  and L  are the area and length of a link, E  is 
the modulus of the longitudinal elasticity, G  is the modulus 
of the transverse elasticity. xI , yI  and zI  are the moment 
of inertias about the x, y, and z axes, respectively. pI  is the 
polar moment of inertia. Then, the compliance matrix of a link 
is given by 
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Fig. 2 Compliance model of 1-DOF joints. 
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Fig. 3 Compliance model of a link. 

 

The infinitesimal twist at the ith joint or the ith link expressed 
in the ith local frame can be expressed by 
 

i
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where i

iC  denotes the compliance matrix of the ith part 
expressed in the ith local frame and i

i ŵ  denotes the wrench 
applied on the ith part expressed in the ith local frame. 
Expressing the infinitesimal twist and wrench with respect to 
the moving frame (P) gives 
 

i
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where the transformation matrix of screws from the ith frame 
to the moving frame is given by 
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where RP

i  denotes the rotation matrix from the ith frame to 
the moving frame and i

P p̂  denotes the skew-symmetric 
matrix representing the vector from the origin of the moving 
frame to that of the ith local frame expressed in the moving 
frame. The total deflection of a serial chain can be calculated 
by the sum of all the deflection in joints and links given by 
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Therefore, the compliance of a serial chain expressed in the 
moving frame can be written by 
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The joint compliance values related to the reciprocal screws of 
actuations and constraints are calculated by 
 

fx ⋅= δlc  and m⋅= δθθc  (27)
 
where 1=f  and 1=m . 
 
 

5. EXAMPLE 
 

In this section, the stiffness of the Tricept manipulator is 
analyzed, in order to explain the suggested method. As shown 
in Fig. 4, the Tricept manipulator has three actuated SPS 
(Spherical-Prismatic-Spherical) limbs and one passive UP 
(Universal-Prismatic) limb.[5,17] The limbs with actuators are 
numbered first and the passive limb is indexed as i=4. Since 
the connectivity of the three actuated SPS limbs is six, there 
exist no reciprocal screws of constraints in the three actuated 
limbs. Also, there exists no reciprocal screw of actuations in 
the passive limb. 

The reciprocal screw of actuations of the ith limb 
32,1,for =i  is a zero-pitch screw passing through the two 

centers of spherical joints, 
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where is  is a unit vector along the prismatic joint and 
ii PB=b . 

Since the connectivity of the passive limb is 34 =C , the 
infinitesimal twist of the end-effector can be expressed as a 
linear combination of three instantaneous twists: 
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and OP=p . The reciprocal screws of constraints can be 
obtained as follows: 
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where 4,34,24 sss ×= , 4,25 ss = , and 4,24,16 sss ×= . 

Therefore, the Jacobian matrices of actuations and 
constraints can be obtained by 
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where pbb −== 54 . 

As shown in Fig. 5, each actuated limb can be modeled 
as a linear spring along the prismatic joint, since the reciprocal 
screw of actuations is pure force. Similarly, for the two 
reaction forces and one reaction moment, the passive limb can 
be modeled as two linear springs and one rotational spring. 
Using Eq. (18), the stiffness matrix of the Tricept manipulator 
can be obtained by 
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where ],,,,[][ 5,4,3,2,1, llllll kkkkkdiagk =  and rk  denotes 
the rotational spring constant. 

The next step is to find the six spring constants from the 
information on the compliance of the joints and links 
consisting serial chains. First, the compliance of an SPS chain 
is modeled. It is noted that the chain is symmetric about the 
line, ii BA . So, it is convenient to align the z axes of all the 
frames along the line. The moving coordinate frame locates at 
the center of the upper spherical joint. Since the spherical joint 
can be considered as three intersecting non-coplanar revolute 
joints, the compliance matrix of a spherical joint expressed in 
the corresponding local frame can be modeled as 
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S
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S
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In a similar manner, the compliance matrix of a linear actuator 
expressed in the corresponding local frame is given by 
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where L

alc ,  is the compliance of a linear actuator, and the 
other diagonal elements are the compliances of a prismatic 
joint. The fixed link length and area are defined as 1L  and 

1A , the moving link length and area are defined as 2L  and 
2A , and the total limb length is L . The total compliance of 

an SPS serial chain is the sum of compliances of the lower and 
upper spherical joints, linear actuator, and fixed and moving 
links. The compliance along the line, ii BA , can be easily 
calculated by 
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Second, the total compliance of the UP serial chain is the 

sum of compliances of the universal joint, prismatic joint and 
the fixed and moving links. Expressing the compliance of the 
universal joint in the uuu zyxO −  yields 
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where U

plc ,  and U
zlc ,  are the linear compliances of the xy 

plane and the z-axis, and U
zc ,θ  is the rotational compliance 

about the z-axis. The z-axis of the local frame of the prismatic 
joint is along the limb, OP . The compliance of the prismatic 
joint is given by 
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Using Eqs. (26) and (27), the compliances related to the 
reciprocal screws of constraints, i.e., 1,cτ , 2,cτ , and 3,cτ  
can be obtained by (refer to Fig. 5) 
 

 
Fig. 4 Kinematic model of a Tricept parallel manipulator. 
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Fig. 5 Stiffness model of a Tricept parallel manipulator. 
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Fig. 6 Definition of the local frames of an UP serial chain. 
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It is noted that in Eq. (39), only joint compliances are 
considered. 
 
 

6. CONCLUSION 
 

In this paper, the stiffness analysis for a low-DOF parallel 
manipulator using the theory of reciprocal screws and 
considering the elastic deformation in joints and links by the 
reciprocal screws is presented. For an F-DOF parallel 
manipulator, it is derived that there exist F number of 

reciprocal screws related to actuations and 6-F number of 
reciprocal screws related to constraints. The stiffness matrix 
for a low-DOF parallel manipulator becomes the sum of the 
stiffness matrices of actuations and constraints. The practical 
values of spring constants are obtained by modeling the 
compliances of joints and links in each serial chain. Finally, 
the methodology is applied to the 3-DOF Tricept parallel 
manipulator. In the further works, this analytic method will be 
used in the design optimization of a parallel-kinematic 
machine tool and the effectiveness of the suggested stiffness 
analysis method will be verified through experiments. 
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