Browse > Article
http://dx.doi.org/10.12989/sem.2016.57.3.473

Development of a 2D isoparametric finite element model based on the layerwise approach for the bending analysis of sandwich plates  

Belarbia, Mohamed-Ouejdi (Laboratoire de Genie Energetique et Materiaux, LGEM. Universite de Biskra)
Tatib, Abdelouahab (Laboratoire de Genie Energetique et Materiaux, LGEM. Universite de Biskra)
Ounisc, Houdayfa (Laboratoire de Genie Energetique et Materiaux, LGEM. Universite de Biskra)
Benchabane, Adel (Laboratoire de Genie Energetique et Materiaux, LGEM. Universite de Biskra)
Publication Information
Structural Engineering and Mechanics / v.57, no.3, 2016 , pp. 473-506 More about this Journal
Abstract
The aim of this work is the development of a 2D quadrilateral isoparametric finite element model, based on a layerwise approach, for the bending analysis of sandwich plates. The face sheets and the core are modeled individually using, respectively, the first order shear deformation theory and the third-order plate theory. The displacement continuity condition at the interfaces 'face sheets-core' is satisfied. The assumed natural strains method is introduced to avoid an eventual shear locking phenomenon. The developed element is a four-nodded isoparametric element with fifty two degrees-of-freedom (52 DOF). Each face sheet has only two rotational DOF per node and the core has nine DOF per node: six rotational degrees and three translation components which are common for the all sandwich layers. The performance of the proposed element model is assessed by six examples, considering symmetric/unsymmetric composite sandwich plates with different aspect ratios, loadings and boundary conditions. The numerical results obtained are compared with the analytical solutions and the numerical results obtained by other authors. The results indicate that the proposed element model is promising in terms of the accuracy and the convergence speed for both thin and thick plates.
Keywords
layerwise; finite element; sandwich plates; bending;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Tu, T.M., Thach, L.N. and Quoc, T.H. (2010), "Finite element modeling for bending and vibration analysis of laminated and sandwich composite plates based on higher-order theory", Comput. Mater. Sci., 49(4), S390-S394.   DOI
2 Whitney, J. (1970), "The effect of boundary conditions on the response of laminated composites", J. Compos. Mater., 4(2), 192-203.   DOI
3 Whitney, J. and Pagano, N. (1970), "Shear deformation in heterogeneous anisotropic plates", J. Appl. Mech., 37(4), 1031-1036.   DOI
4 Wu, C.P. and Hsu, C.S. (1993), "A new local high-order laminate theory", Compos. Struct., 25(1), 439-448.   DOI
5 Wu, C.P. & Lin, C.C. (1993), "Analysis of sandwich plates using a mixed finite element", Compos. Struct., 25(1), 397-405.   DOI
6 Xiaohui, R., Wanji, C. and Zhen, W. (2012), "A C0-type zig-zag theory and finite element for laminated composite and sandwich plates with general configurations", Arch. Appl. Mech., 82(3), 391-406.   DOI
7 Zhang, Y. and Yang, C. (2009), "Recent developments in finite element analysis for laminated composite plates", Compos. Struct., 88(1), 147-157.   DOI
8 Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101.   DOI
9 Azar, J.J. (1968), "Bending theory for multilayer orthotropic sandwich plates", AIAA J., 6(11), 2166-2169.   DOI
10 Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140.   DOI
11 Carrera, E. (2003), "Historical review of zig-zag theories for multilayered plates and shells", Appl. Mech. Rev., 56, 287-308.   DOI
12 Cetkovic, M. and Vuksanovic, D. (2009), "Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model", Compos. Struct., 88(2), 219-227.   DOI
13 Chalak, H.D., Chakrabarti, A., Sheikh, A.H. and Iqbal, M.A. (2014), "C0 FE model based on HOZT for the analysis of laminated soft core skew sandwich plates: Bending and vibration", Appl. Math. Model., 38(4), 1211-1223.   DOI
14 Chakrabarti, A. and Sheikh, A.H. (2004), "A new triangular element to model inter-laminar shear stress continuous plate theory", Int. J. Numer. Meth. Eng., 60(7), 1237-1257.   DOI
15 Chakrabarti, A. and Sheikh, A.H. (2005), "Analysis of laminated sandwich plates based on interlaminar shear stress continuous plate theory", J. Eng. Mech., 131(4), 377-384.   DOI
16 Chalak, H.D., Chakrabarti, A., Iqbal, M.A. and Sheikh, A.H. (2012), "An improved C0 FE model for the analysis of laminated sandwich plate with soft core", Finite Elem. Anal. Des., 56, 20-31.   DOI
17 Cho, M. and Parmerter, R. (1993), "Efficient higher order composite plate theory for general lamination configurations", AIAA J., 31(7), 1299-1306.   DOI
18 Cho, M. and Parmerter, R.R. (1992), "An efficient higher-order plate theory for laminated composites", Compos. Struct., 20(2), 113-123.   DOI
19 Di Sciuva, M. (1986), "Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: an evaluation of a new displacement model", J. Sound Vib., 105(3), 425-442.   DOI
20 Dvorkin, E.N. and Bathe, K.J. (1984), "A continuum mechanics based four-node shell element for general non-linear analysis", Eng. Comput., 1(1), 77-88.   DOI
21 Folie, G. (1970), "Bending of clamped orthotropic sandwich plates", J. Eng. Mech. Div., 96(3), 243-265.
22 Kabir, H.R.H. (1995), "A shear-locking free robust isoparametric three-node triangular finite element for moderately-thick and thin arbitrarily laminated plates", Comput. Struct., 57(4), 589-597.   DOI
23 Grover, N., Maiti, D. and Singh, B. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675.   DOI
24 Ha, K. (1990), "Finite element analysis of sandwich plates: an overview", Comput. Struct., 37(4), 397-403.   DOI
25 Huang, H. and Hinton, E. (1984), "A nine node Lagrangian Mindlin plate element with enhanced shear interpolation", Eng. Comput., 1(4), 369-379.   DOI
26 Kant, T. (1982), "Numerical analysis of thick plates", Comput. Meth. Appl. Mech. Eng., 31(1), 1-18.   DOI
27 Kant, T. and Kommineni, J. (1992), "$C^{0}$Finite element geometrically non-linear analysis of fibre reinforced composite and sandwich laminates based on a higher-order theory", Comput. Struct., 45(3), 511-520.   DOI
28 Kant, T. and Swaminathan, K. (2000), "Estimation of transverse/interlaminar stresses in laminated composites-a selective review and survey of current developments", Compos. Struct., 49(1), 65-75.   DOI
29 Kant, T. and Swaminathan, K. (2002), "Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory", Compos. Struct., 56(4), 329-344.   DOI
30 Kapuria, S. and Kulkarni, S. (2007), "An improved discrete Kirchhoff quadrilateral element based on third-order zigzag theory for static analysis of composite and sandwich plates", Int. J. Numer. Meth. Eng., 69(9), 1948-1981.   DOI
31 Kheirikhah, M.M., Khalili, S.M.R. and Malekzadeh Fard, K. (2012), "Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory", Euro. J. Mech. A/Solid., 31(1), 54-66.   DOI
32 Khandan, R., Noroozi, S., Sewell, P. and Vinney, J. (2012), "The development of laminated composite plate theories: a review", J. Mater. Sci., 47(16), 5901-5910.   DOI
33 Khandelwal, R., Chakrabarti, A. and Bhargava, P. (2013), "An efficient FE model based on combined theory for the analysis of soft core sandwich plate", Comput. Mech., 51(5), 673-697.   DOI
34 Khatua, T. and Cheung, Y. (1973), "Bending and vibration of multilayer sandwich beams and plates", Int. J. Numer. Meth. Eng., 6(1), 11-24.   DOI
35 Kirchhoff, G. (1850), "Uber das gleichgewicht und die bewegung einer elastischen scheibe", J. Fur Die Reine und Angewandte Mathematik,40, 51-88.
36 Kulkarni, S. and Kapuria, S. (2007), "A new discrete Kirchhoff quadrilateral element based on the thirdorder theory for composite plates", Comput. Mech., 39(3), 237-246.   DOI
37 Lee, L. and Fan, Y. (1996), "Bending and vibration analysis of composite sandwich plates", Comput. Struct., 60(1), 103-112.   DOI
38 Lee, S. (2004), "Free vibration analysis of plates by using a four-node finite element formulated with assumed natural transverse shear strain", J. Sound Vib., 278(3), 657-684.   DOI
39 Lee, S.J. and Kim, H.R. (2013), "FE analysis of laminated composite plates using a higher order shear deformation theory with assumed strains", Latin Am. J. Solid. Struct., 10(3), 523-547.   DOI
40 Librescu, L. (1975), Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell-type Structures, Noordhoff, Leyden, Netherlands
41 Lo, K., Christensen, R. and Wu, E. (1977b), "A high-order theory of plate deformation-part 2: laminated plates", J. Appl. Mech., 44(4), 669-676.   DOI
42 Linke, M., Wohlers, W. and Reimerdes, H.G. (2007), "Finite element for the static and stability analysis of sandwich plates", J. Sandw. Struct. Mater., 9(2), 123-142.   DOI
43 Liou, W.J. and Sun, C. (1987), "A three-dimensional hybrid stress isoparametric element for the analysis of laminated composite plates", Comput. Struct., 25(2), 241-249.   DOI
44 Lo, K., Christensen, R. and Wu, E. (1977a), "A high-order theory of plate deformation-Part 1: Homogeneous plates", J. Appl. Mech., 44(4), 663-668.   DOI
45 Manjunatha, B. and Kant, T. (1993), "On evaluation of transverse stresses in layered symmetric composite and sandwich laminates under flexure", Eng. Comput., 10(6), 499-518.   DOI
46 Mantari, J., Oktem, A. and Guedes Soares, C. (2012), "A new trigonometric layerwise shear deformation theory for the finite element analysis of laminated composite and sandwich plates", Comput. Struct., 94, 45-53.
47 Maturi, D.A., Ferreira, A.J.M., Zenkour, A.M. and Mashat, D.S. (2014), "Analysis of sandwich plates with a new layerwise formulation", Compos. Part B: Eng., 56(0), 484-489.   DOI
48 Murakami, H. (1986), "Laminated composite plate theory with improved in-plane responses", J. Appl. Mech., 53(3), 661-666.   DOI
49 Nayak, A., Moy, S. and Shenoi, R. (2002), "Free vibration analysis of composite sandwich plates based on Reddy's higher-order theory", Compos. Part B: Eng., 33(7), 505-519.   DOI
50 Nayak, A., Moy, S.J. and Shenoi, R. (2003), "Quadrilateral finite elements for multilayer sandwich plates", J. Strain Anal. Eng. Des., 38(5), 377-392.   DOI
51 Oskooei, S. and Hansen, J. (2000), "Higher-order finite element for sandwich plates", AIAA J., 38(3), 525-533.   DOI
52 Nemeth, M.P. (2012), Cubic zig-zag enrichment of the classical Kirchhoff kinematics for laminated and sandwich plate, National Aeronautics and Space Administration, Langley Research Center.
53 Noor, A.K. and Burton, W.S. (1990), "Three-dimensional solutions for antisymmetrically solutions for antisymmetrically laminated anisotropic plates", J. Appl. Mech., 57(1), 182-188.   DOI
54 Noor, A.K., Burton, W.S. and Bert, C.W. (1996), "Computational models for sandwich panels and shells", Appl. Mech. Rev.,49, 155.   DOI
55 Ounis, H., Tati, A. and Benchabane, A. (2014), "Thermal buckling behavior of laminated composite plates: a finite-element study", Front. Mech. Eng., 9(1), 41-49..   DOI
56 Pagano, N. (1969), "Exact solutions for composite laminates in cylindrical bending", J. Compos. Mater., 3(3), 398-411.   DOI
57 Pagano, N. (1970), "Exact solutions for rectangular bidirectional composites and sandwich plates", J. Compos. Mater., 4(1), 20-34.   DOI
58 Pandit, M., Sheikh, A.H. and Singh, B.N. (2010), "Analysis of laminated sandwich plates based on an improved higher order zigzag theory", J. Sandw. Struct. Mater., 12(3), 307-326.   DOI
59 Pandit, M.K., Sheikh, A.H. and Singh, B.N. (2008), "An improved higher order zigzag theory for the static analysis of laminated sandwich plate with soft core", Finite Elem. Anal. Des., 44(9), 602-610.   DOI
60 Pandya, B. and Kant, T. (1988), "Higher-order shear deformable theories for flexure of sandwich platesfinite element evaluations", Int. J. Solid. Struct., 24(12), 1267-1286.   DOI
61 Ramtekkar, G., Desai, Y. and Shah, A. (2003), "Application of a three-dimensional mixed finite element model to the flexure of sandwich plate", Comput. Struct., 81(22), 2183-2198.   DOI
62 Plagianakos, T.S. and Saravanos, D.A. (2009), "Higher-order layerwise laminate theory for the prediction of interlaminar shear stresses in thick composite and sandwich composite plates", Compos. Struct., 87(1), 23-35.   DOI
63 Ramesh, S.S., Wang, C., Reddy, J. and Ang, K. (2009), "A higher-order plate element for accurate prediction of interlaminar stresses in laminated composite plates", Compos. Struct., 91(3), 337-357.   DOI
64 Ramtekkar, G., Desai, Y. and Shah, A. (2002), "Mixed finite-element model for thick composite laminated plates", Mech. Adv. Mater. Struct., 9(2), 133-156.   DOI
65 Reddy, J., Khdeir, A. and Librescu, L. (1987), "Levy type solutions for symmetrically laminated rectangular plates using first-order shear deformation theory", J. Appl. Mech., 54(3), 740-742.   DOI
66 Reddy, J. and Robbins, D. (1994), "Theories and computational models for composite laminates", Appl. Mech. Rev., 47, 147.   DOI
67 Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752.   DOI
68 Reddy, J.N. (1987), "A generalization of two-dimensional theories of laminated composite plates", Commun. Appl. Numer. Meth., 3(3), 173-180.   DOI
69 Reddy, J.N. (1993), "An evaluation of equivalent-single-layer and layerwise theories of composite laminates", Compos. Struct., 25(1-4), 21-35.   DOI
70 Reissner, E. (1975), "On transverse bending of plates, including the effect of transverse shear deformation", Int. J. Solid. Struct., 11(5), 569-573.   DOI
71 Sheikh, A.H. and Chakrabarti, A. (2003), "A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates", Finite Elem. Anal. Des., 39(9), 883-903.   DOI
72 Rezaiee-Pajand, M., Shahabian, F. and Tavakoli, F. (2012) "A new higher-order triangular plate bending element for the analysis of laminated composite and sandwich plates", Struct. Eng. Mech., 43(2), 253-271.   DOI
73 Robbins, D.H., Jr., Reddy, J.N. and Rostam-Abadi, F. (2005), "Layerwise modeling of progressive damage in fiber-reinforced composite laminates", Int. J. Mech. Mater. Des., 2(3-4), 165-182.   DOI
74 Sahoo, R. and Singh, B.N. (2013), "A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates", Compos. Struct., 105(0), 385-397.   DOI
75 Singh, S.K., Chakrabarti, A., Bera, P. and Sony, J. (2011), "An efficient C0 FE model for the analysis of composites and sandwich laminates with general layup", Latin Am. J. Solid. Struct., 8(2), 197-212.   DOI
76 Spilker, R. (1982), "Hybrid-stress eight-node elements for thin and thick multilayer laminated plates", Int. J. Numer. Meth. Eng., 18(6), 801-828.   DOI
77 Srinivas, S. and Rao, A. (1971), "A three-dimensional solution for plates and laminates", J. Franklin Inst., 291(6), 469-481.   DOI
78 Stavsky, Y. (1965), "On the theory of symmetrically heterogeneous plates having the same thickness variation of the elastic moduli", Top. Appl. Mech.,105.
79 Topdar, P., Sheikh, A.H. and Dhang, N. (2003), "Finite element analysis of composite and sandwich plates using a continuous inter-laminar shear stress model", J. Sandw. Struct. Mater., 5(3), 207-231.   DOI