• 제목/요약/키워드: Singularly perturbed problems

검색결과 34건 처리시간 0.023초

SOLVING SECOND ORDER SINGULARLY PERTURBED DELAY DIFFERENTIAL EQUATIONS WITH LAYER BEHAVIOR VIA INITIAL VALUE METHOD

  • GEBEYAW, WONDWOSEN;ANDARGIE, AWOKE;ADAMU, GETACHEW
    • Journal of applied mathematics & informatics
    • /
    • 제36권3_4호
    • /
    • pp.331-348
    • /
    • 2018
  • In this paper, an initial value method for solving a class of singularly perturbed delay differential equations with layer behavior is proposed. In this approach, first the given problem is modified in to an equivalent singularly perturbed problem by approximating the term containing the delay using Taylor series expansion. Then from the modified problem, two explicit Initial Value Problems which are independent of the perturbation parameter, ${\varepsilon}$, are produced: the reduced problem and boundary layer correction problem. Finally, these problems are solved analytically and combined to give an approximate asymptotic solution to the original problem. To demonstrate the efficiency and applicability of the proposed method three linear and one nonlinear test problems are considered. The effect of the delay on the layer behavior of the solution is also examined. It is observed that for very small ${\varepsilon}$ the present method approximates the exact solution very well.

AN EXPONENTIALLY FITTED METHOD FOR TWO PARAMETER SINGULARLY PERTURBED PARABOLIC BOUNDARY VALUE PROBLEMS

  • Gemechis File Duressa;Tariku Birabasa Mekonnen
    • 대한수학회논문집
    • /
    • 제38권1호
    • /
    • pp.299-318
    • /
    • 2023
  • This article devises an exponentially fitted method for the numerical solution of two parameter singularly perturbed parabolic boundary value problems. The proposed scheme is able to resolve the two lateral boundary layers of the solution. Error estimates show that the constructed scheme is parameter-uniformly convergent with a quadratic numerical rate of convergence. Some numerical test examples are taken from recently published articles to confirm the theoretical results and demonstrate a good performance of the current scheme.

AN INITIAL VALUE TECHNIQUE FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH A SMALL NEGATIVE SHIFT

  • Rao, R. Nageshwar;Chakravarthy, P. Pramod
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.131-145
    • /
    • 2013
  • In this paper, we present an initial value technique for solving singularly perturbed differential difference equations with a boundary layer at one end point. Taylor's series is used to tackle the terms containing shift provided the shift is of small order of singular perturbation parameter and obtained a singularly perturbed boundary value problem. This singularly perturbed boundary value problem is replaced by a pair of initial value problems. Classical fourth order Runge-Kutta method is used to solve these initial value problems. The effect of small shift on the boundary layer solution in both the cases, i.e., the boundary layer on the left side as well as the right side is discussed by considering numerical experiments. Several numerical examples are solved to demonstate the applicability of the method.

A FIFTH ORDER NUMERICAL METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH NEGATIVE SHIFT

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.441-452
    • /
    • 2009
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed differential-difference equations with negative shift. In recent papers the term negative shift has been using for delay. Similar boundary value problems are associated with expected first exit time problem of the membrane, potential in models for neuron and in variational problems in control theory. In the numerical treatment for such type of boundary value problems, first we use Taylor approximation to tackle terms containing small shifts which converts it to a boundary value problem for singularly perturbed differential equation. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system and is solved using the boundary conditions. Several numerical examples are solved and compared with exact solution. It is observed that present method approximates the exact solution very well.

  • PDF

FITTED MESH METHOD FOR SINGULARLY PERTURBED DELAY DIFFERENTIAL TURNING POINT PROBLEMS EXHIBITING TWIN BOUNDARY LAYERS

  • MELESSE, WONDWOSEN GEBEYAW;TIRUNEH, AWOKE ANDARGIE;DERESE, GETACHEW ADAMU
    • Journal of applied mathematics & informatics
    • /
    • 제38권1_2호
    • /
    • pp.113-132
    • /
    • 2020
  • In this paper, a class of linear second order singularly perturbed delay differential turning point problems containing a small delay (or negative shift) on the reaction term and when the solution of the problem exhibits twin boundary layers are examined. A hybrid finite difference scheme on an appropriate piecewise-uniform Shishkin mesh is constructed to discretize the problem. We proved that the method is almost second order ε-uniformly convergent in the maximum norm. Numerical experiments are considered to illustrate the theoretical results.

AN INITIAL VALUE METHOD FOR SINGULARLY PERTURBED SYSTEM OF REACTION-DIFFUSION TYPE DELAY DIFFERENTIAL EQUATIONS

  • Subburayan, V.;Ramanujam, N.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제17권4호
    • /
    • pp.221-237
    • /
    • 2013
  • In this paper an asymptotic numerical method named as Initial Value Method (IVM) is suggested to solve the singularly perturbed weakly coupled system of reaction-diffusion type second order ordinary differential equations with negative shift (delay) terms. In this method, the original problem of solving the second order system of equations is reduced to solving eight first order singularly perturbed differential equations without delay and one system of difference equations. These singularly perturbed problems are solved by the second order hybrid finite difference scheme. An error estimate for this method is derived by using supremum norm and it is of almost second order. Numerical results are provided to illustrate the theoretical results.

ROBUST NUMERICAL METHOD FOR SINGULARLY PERTURBED TURNING POINT PROBLEMS WITH ROBIN TYPE BOUNDARY CONDITIONS

  • GEETHA, N.;TAMILSELVAN, A.
    • Journal of applied mathematics & informatics
    • /
    • 제37권3_4호
    • /
    • pp.183-200
    • /
    • 2019
  • We have constructed a robust numerical method on Shishkin mesh for a class of convection diffusion type turning point problems with Robin type boundary conditions. Supremum norm is used to derive error estimates which is of order O($N^{-1}$ ln N). Theoretical results are verified by providing numerical examples.

Higher Order Uniformly Convergent Numerical Scheme for Singularly Perturbed Reaction-Diffusion Problems

  • Anilay, Worku Tilahun;Duressa, Gemechis File;Woldaregay, Mesfin Mekuria
    • Kyungpook Mathematical Journal
    • /
    • 제61권3호
    • /
    • pp.591-612
    • /
    • 2021
  • In this paper, a uniformly convergent numerical scheme is designed for solving singularly perturbed reaction-diffusion problems. The problem is converted to an equivalent weak form and then a Galerkin finite element method is used on a piecewise uniform Shishkin mesh with linear basis functions. The convergence of the developed scheme is proved and it is shown to be almost fourth order uniformly convergent in the maximum norm. To exhibit the applicability of the scheme, model examples are considered and solved for different values of a singular perturbation parameter ε and mesh elements. The proposed scheme approximates the exact solution very well.

A SCHWARZ METHOD FOR FOURTH-ORDER SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEM WITH DISCONTINUOUS SOURCE TERM

  • CHANDR, M.;SHANTHI, V.
    • Journal of applied mathematics & informatics
    • /
    • 제34권5_6호
    • /
    • pp.495-508
    • /
    • 2016
  • A singularly perturbed reaction-diffusion fourth-order ordinary differential equation(ODE) with discontinuous source term is considered. Due to the discontinuity, interior layers also exist. The considered problem is converted into a system of weakly coupled system of two second-order ODEs, one without parameter and another with parameter ε multiplying highest derivatives and suitable boundary conditions. In this paper a computational method for solving this system is presented. A zero-order asymptotic approximation expansion is applied in the second equation. Then, the resulting equation is solved by the numerical method which is constructed. This involves non-overlapping Schwarz method using Shishkin mesh. The computation shows quick convergence and results presented numerically support the theoretical results.

AN OVERLAPPING SCHWARZ METHOD FOR SINGULARLY PERTURBED THIRD ORDER CONVECTION-DIFFUSION TYPE

  • ROJA, J. CHRISTY;TAMILSELVAN, A.
    • Journal of applied mathematics & informatics
    • /
    • 제36권1_2호
    • /
    • pp.135-154
    • /
    • 2018
  • In this paper, an almost second order overlapping Schwarz method for singularly perturbed third order convection-diffusion type problem is constructed. The method splits the original domain into two overlapping subdomains. A hybrid difference scheme is proposed in which on the boundary layer region we use the combination of classical finite difference scheme and central finite difference scheme on a uniform mesh while on the non-layer region we use the midpoint difference scheme on a uniform mesh. It is shown that the numerical approximations which converge in the maximum norm to the exact solution. We proved that, when appropriate subdomains are used, the method produces convergence of second order. Furthermore, it is shown that, two iterations are sufficient to achieve the expected accuracy. Numerical examples are presented to support the theoretical results. The main advantages of this method used with the proposed scheme are it reduce iteration counts very much and easily identifies in which iteration the Schwarz iterate terminates.