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AN EXPONENTIALLY FITTED METHOD FOR TWO

PARAMETER SINGULARLY PERTURBED PARABOLIC

BOUNDARY VALUE PROBLEMS

Gemechis File Duressa and Tariku Birabasa Mekonnen

Abstract. This article devises an exponentially fitted method for the nu-
merical solution of two parameter singularly perturbed parabolic bound-

ary value problems. The proposed scheme is able to resolve the two

lateral boundary layers of the solution. Error estimates show that the
constructed scheme is parameter-uniformly convergent with a quadratic

numerical rate of convergence. Some numerical test examples are taken
from recently published articles to confirm the theoretical results and

demonstrate a good performance of the current scheme.

1. Introduction

Many problems occurring in engineering and computational science are char-
acterized by having solutions that vary unexpectedly in some narrow regions
called boundary or interior layers. The boundary layer occurs when the highest
order derivative term is multiplied by a small positive number termed singular
perturbation parameter, and the interior layer arises when a discontinuity is
there in the given data. The problems are generally named singular pertur-
bation problems. Some of such problems are the flow field into two regions,
electromagnetic field problem in moving media, chemical reactor theory, lubri-
cation theory, fluid flow through unsaturated porous media, etc. [1, 12, 15, 31].
It is difficult to obtain an accurate solution for such problems by standard nu-
merical methods [11,13] specifically when the singular perturbation parameter
goes to zero. Hence, searching for accurate numerical methods which do not
require the introduction of very fine mesh discretization but still able to resolve
the singularity of the problems, is the main concern of this study.

Numerical methods that are flexible enough to care of the singularity char-
acter of the problem (both time-dependent and steady-state version) have
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been widely studied [3, 5–7, 29]. By one or another, several authors have con-
structed these methods through the fitted operator [2, 10, 17, 18, 20], graded
mesh [4,30,32], piecewise uniform mesh [11,25], and adaptively generated mesh
techniques [7, 8]. To ensure that the error in the approximate solution is inde-
pendent of the value of the perturbation parameter, to develop a stable numer-
ical method, and to obtain a numerical solution that is uniformly convergent,
the scholars have used at least one of the aforementioned techniques and differ
from each other only in the construction of the scheme.

However, the accuracy of the approximate solutions available in the litera-
ture is not more satisfactory, and still needs the development of further numer-
ical methods which are able to yield a more accurate numerical solution. Thus,
in this paper, a fitted operator method is devised in which we have replaced
the standard finite difference operator with a difference operator which imitates
the singularity character of the differential operator. Unlike the previous, to
apply this method, we do not need a priori knowledge of the location and width
of the boundary layers. Owing to this, a scheme is constructed through the
Crank-Nicolson method discretization for the time variable, and finite difference
approximation techniques accompanied by an exponentially fitted operator on
equally spaced meshes for the spatial variable. It is shown that the scheme is
a second-order accurate both in time and space, and the accuracy is analyzed
on a uniform mesh by reducing it to a system of ordinary differential equations
with respect to the spatial variable. It is proved that the numerical solution
obtained by the proposed method converges uniformly to the solution of the
continuous problem independent of the singular perturbation parameters.

2. Description of the problem and method

The governing problem we considered for this study is

(1) Lε,µu :=
∂u

∂t
− ε∂

2u

∂x2
− µa(x, t)

∂u

∂x
+ b(x, t)u = f(x, t), (x, t) ∈ D,

on the domain D = Ω × (0, T ], Ω = (0, 1) subject to Dirichlet type boundary
conditions

(2)

{
u(x, 0) = s(x), x ∈ Ω,
u(0, t) = 0 = u(1, t), t ∈ [0, T ],

where 0 < ε� 1 and 0 ≤ µ� 1 are two small positive parameters. The func-
tions a(x, t), b(x, t), f(x, t) and s(x) are assumed to be sufficiently continuously
differentiable and satisfy a(x, t) ≥ α > 0, b(x, t) ≥ β > 0, ∀(x, t) ∈ D. Further,
we consider the given boundary data are compatible and smooth so that the
data match at the two corners (0, 0) and (1, 0). These restrictions ensure that
there exists a unique solution u(x, t) displaying a boundary layer on both the
left and right lateral boundaries of the spatial domain Ω with considerably dif-
ferent thickness depending on the relation between µ2 and ε [11,14,22,23,26].
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For chosen γ ≈ min(x,t)∈D a(x, t)/b(x, t), the width of the layers can be cou-

pled as follows. If µ2 ≤ εγ/α, boundary layers of equal width are displayed.
However, if µ2 ≥ εγ/α, boundary layers of different width are expected.

2.1. Bounds on the solution

In this section, we consider some properties of the continuous problem and
bounds on the solution and on its derivatives through maximum principle.
These properties are used in the error estimation that has occurred in our
numerical approximations to the solution u(x, t) of Eqs. (1) and (2).

Lemma 2.1. Let u(x, t) ∈ C2,1(D). If u(x, t) ≥ 0 for all (x, t) on the boundary
∂D of the domain D, and Lε,µu ≥ 0 for all (x, t) ∈ D, then u(x, t) ≥ 0 for all

(x, t) ∈ D.

Proof. It has shown in [11]. �

Lemma 2.2. Let u(x, t) be the solution of Eqs. (1) and (2). Then we have the
estimate

‖u‖ ≤ β−1‖f‖+ max |s(x)|,
where ‖ · ‖ is the maximum norm.

Proof. See [18]. �

Lemma 2.3. The derivatives of the solution u(x, t) satisfy the following con-
dition for all non-negative integers i, j such that i+ 3j ≤ 4.∥∥∥ ∂i+ju

∂xi∂tj

∥∥∥
D
≤

{
Cε

−i
2 , if µ2 ≤ γε/α,

C
(
µ
ε

)i
, if µ2 ≥ γε/α,

where the constant C is independent of ε and µ and depends only on the bounded
derivatives of the coefficients and the source term.

Proof. See [11]. �

2.2. Time variable discretization

Let us discretize the time interval [0, T ] into M equal number of subintervals
with mesh length k = T/M . This gives a time meshDM

t = {tm = (m−1)k,m =
1, 2, . . . ,M + 1}. Two level discretization of the time variable in Eqs. (1) and
(2) by the Crank-Nicolson method and collecting the (m)th and (m−1)th time
levels give a differential equation in the space variable x,

(3)


u(x, 0) = s(x),
LMε,µũ ≡ −εũxx(x)− µa(x)ũx(x) + q(x)ũ(x) = g(x),
ũ(0) = 0 = ũ(1),

where q(x) =
(
b(x, tm) + 2

k

)
, ũ(x) = u(x, tm), a(x) = a(x, tm), p(x) = (b(x, tm)

− 2
k

)
, H(x) = f(x, tm) + f(x, tm−1) and g(x) = εuxx(x, tm−1) + µa(x, tm−1)

ux(x, tm−1)− p(x)u(x, tm−1) +H(x).
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Consider the characteristic equation corresponding to Eq. (3) for the purpose
of describing the boundary layers in the solution of Eqs. (1) and (2).

(4) − εr2(x)− µa(x)r(x) + q(x) = 0.

This defines two continuous functions, which are given by

(5)

{
r1(x) = (−µa(x)−

√
(µa(x))2 + 4εq(x))/(2ε),

r2(x) = (−µa(x) +
√

(µa(x))2 + 4εq(x))/(2ε).

Let

η1 = −max
x∈Ω

r1(x) and η2 = min
x∈Ω

r2(x).

Here, we can see that η2 ≤ η1 and as it becomes much less, the boundary layer
on the left is stronger than on the right lateral boundary.

Lemma 2.4. For a fixed number 0 < ρ < 1, a certain order δ and the solution
ũ(x) of Eq. (3), the following holds.

|∂
iũ

∂xi
| ≤ C

(
1 + ηi1e

−ρηi1x + ηi2e
−ρηi2(1−x)

)
for 0 ≤ i ≤ δ,

where C is a constant independent of ε, µ.

Proof. See [16,27]. �

Lemma 2.5. Let the error estimate in the temporal direction be denoted by
TEt. Then, its bound is given by

(6) ‖TEt‖ ≤ C(k2).

Proof. The proof is given in [17]. �

2.3. Spatial variable discretization

Here, we discretize the domain Ω = [0, 1] intoN equal number of subintervals
with mesh length h = 1/N yielding a space mesh DN

x = {x1, x2, . . . , xN+1}.
Now denoting U(xn, tm) = Umn and the ith derivative di/dxiU(xn, tm) =
(U [i])mn , at (m)th and (m − 1)th time level, we have the following Taylor’s
series expansions:

(7)
Umn+1 = Umn + h(U ′)mn +

h2

2!
(U ′′)mn +

h3

3!
(U ′′′)mn +

h4

4!
(U [4])mn

+
h5

5!
(U [5])mn +

h6

6!
(U [6])mn +

h7

7!
(U [7])mn +

h8

8!
(U [8])mn +O(h9),

(8)
Umn−1 = Umn − h(U ′)mn +

h2

2!
(U ′′)mn −

h3

3!
(U ′′′)mn +

h4

4!
(U [4])mn

− h5

5!
(U [5])mn +

h6

6!
(U [6])mn −

h7

7!
(U [7])mn +

h8

8!
(U [8])mn −O(h9),
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(9)

Um−1
n+1 = Um−1

n + h(U ′)m−1
n +

h2

2!
(U ′′)m−1

n +
h3

3!
(U ′′′)m−1

n

+
h4

4!
(U [4])m−1

n +
h5

5!
(U [5])m−1

n +
h6

6!
(U [6])m−1

n

+
h7

7!
(U [7])m−1

n +
h8

8!
(U [8])m−1

n +O(h9),

(10)

Um−1
n−1 = Um−1

n − h(U ′)m−1
n +

h2

2!
(U ′′)m−1

n − h3

3!
(U ′′′)m−1

n

+
h4

4!
(U [4])m−1

n − h5

5!
(U [5])m−1

n +
h6

6!
(U [6])m−1

n

− h7

7!
(U [7])m−1

n +
h8

8!
(U [8])m−1

n −O(h9).

Using Eqs. (7)-(10) and following [28], we get

(11) Umn−1 − 2Umn + Umn+1 =
h2

30
[(U ′′)mn−1 + 28(U ′′)mn + (U ′′)mn+1] + τ1,

and

(12) Um−1
n−1 − 2Um−1

n + Um−1
n+1 =

h2

30
[(U ′′)m−1

n−1 + 28(U ′′)m−1
n + (U ′′)m−1

n+1 ] + τ2,

where τ1 = h4

20 (U [4])mn − 13h8

8!15 (U [8])mn +O(h10), τ2 = h4

20 (U [4])m−1
n − 13h8

8!15 (U [8])m−1
n

+O(h10). Now adding Eq. (11) and Eq. (12), we arrive at

(13)

Umn−1 + Um−1
n−1 − 2(Umn + Um−1

n ) + Umn+1 + Um−1
n+1

=
h2

30
[(U ′′)mn−1 + 28(U ′′)mn + (U ′′)mn+1]

+
h2

30
[(U ′′)m−1

n−1 + 28(U ′′)m−1
n + (U ′′)m−1

n+1 ].

From Eq. (3), solving for the highest order derivative gives

(14)

(U ′′)mn−1 + (U ′′)m−1
n−1

=
1

ε
[−µamn−1(U ′)mn−1 + qmn−1U

m
n−1 − fmn−1]

+
1

ε
[−µam−1

n−1 (U ′)m−1
n−1 + pm−1

n−1 U
m−1
n−1 − f

m−1
n−1 ],

(15)

(U ′′)mn + (U ′′)m−1
n

=
1

ε
[−µamn (U ′)mn + qmn−1U

m
n − fmn ]

+
1

ε
[−µam−1

n (U ′)m−1
n + pm−1

n Um−1
n − fm−1

n ],
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(16)

(U ′′)mn+1 + (U ′′)m−1
n+1

=
1

ε
[−µamn+1(U ′)mn+1 + qmn+1U

m
n+1 − fmn+1]

+
1

ε
[−µam−1

n+1 (U ′)m−1
n+1 + pm−1

n+1 U
m−1
n+1 − f

m−1
n+1 ].

Substituting Eqs. (14)-(16) into Eq. (13) gives

(17)

ε(Umn−1 + Um−1
n−1 − 2(Umn + Um−1

n ) + Umn+1 + Um−1
n+1 )

=
h2

30
[−µamn−1(U ′)mn−1 + qmn−1U

m
n−1 − fmn−1]

+
28h2

30
[−µamn (U ′)mn + qmn U

m
n − fmn ]

+
h2

30
[−µamn+1(U ′)mn+1 + qmn+1U

m
n+1 − fmn+1]

+
h2

30
[−µam−1

n−1 (U ′)m−1
n−1 + pm−1

n−1 U
m−1
n−1 − f

m−1
n−1 ]

+
28h2

30
[−µam−1

n (U ′)m−1
n + pm−1

n Um−1
n − fm−1

n ]

+
h2

30
[−µam−1

n+1 (U ′)m−1
n+1 + pm−1

n+1 U
m−1
n+1 − f

m−1
n+1 ].

But from [28] we have

(18)


(U ′)mn−1 =

−3Umn−1 + 4Umn − Umn+1

2h
+ h(U ′′)mn +O(h2),

(U ′)mn =
Umn+1 − Umn−1

2h
+O(h2),

(U ′)mn+1 =
Umn−1 − 4Umn + 3Umn+1

2h
− h(U ′′)mn +O(h2),

and

(19)



(U ′)m−1
n−1 =

−3Um−1
n−1 + 4Um−1

n − Um−1
n+1

2h
+ h(U ′′)m−1

n +O(h2),

(U ′)m−1
n =

Um−1
n+1 − U

m−1
n−1

2h
+O(h2),

(U ′)m−1
n+1 =

Um−1
n−1 − 4Um−1

n + 3Um−1
n+1

2h
− h(U ′′)m−1

n +O(h2).

Plugging Eqs. (18) and (19) into Eq. (17) and introducing a fitting factor, we
obtain

(20) LN,Mε,µ Umn =
1

30
[fmn + 28fmn + fmn ] +

1

30
[fm−1
n + 28fm−1

n + fm−1
n ],

where

LN,Mε,µ Umn = −
(
εσmj
h2

+
µamn−1

30h
−
µamn+1

30h

)(
Umn−1 − 2Umn + Umn+1

)
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− µ

30h
{amn−1[−3Umn−1 + 4Umn − Umn+1] + 28amn [Umn+1 − Umn−1]}

− µ

30h
amn+1[Umn−1 − 4Umn + 3Umn+1]

+
1

30

(
qmn−1U

m
n−1 + 28qmn U

m
n + qmn+1U

m
n+1

)
(
εσm−1
j

h2
+
µam−1

n−1

30h
−
µam−1

n+1

30h

)(
Um−1
n−1 − 2Um−1

n + Um−1
n+1

)
− µ

30h
{am−1
n−1 [−3Um−1

n−1 + 4Um−1
n − Um−1

n+1 ]

+ 28am−1
n [Um−1

n+1 − U
m−1
n−1 ]}

− µ

30h
am−1
n+1 [Um−1

n−1 − 4Um−1
n + 3Um−1

n+1 ]

+
1

30

(
pm−1
n−1 U

m−1
n−1 + 28pm−1

n Um−1
n + pm−1

n+1 U
m−1
n+1

)
.

We can write Eq. (20) in the form of a system of equations as

(21) A−nU
m
n−1 +A0

nU
m
n +A+

nU
m
n+1 +B−n U

m−1
n−1 +B0

nU
m−1
n +B+

n U
m−1
n+1 = Fmn

for n = 2, 3, . . . , N, m = 2, 3, . . . ,M , and together with the given conditions,
it becomes (N + 1)× (N + 1) system of equations and sufficient to be solved,
where

A−n =
−σmj ε
h2

+
µ

60h

(
amn−1 + 28amn + amn+1

)
+

1

30

(
bmn−1 + 2/k

)
,

A0
n =

2σmj ε

h2
+ 14/15 (bmn + 2/k) ,

A+
n =

−σmj ε
h2

− µ

60h

(
amn−1 + 28amn + amn+1

)
+

1

30

(
bmn+1 + 2/k

)
,

B−n =
−σm−1

j ε

h2
+

µ

60h

(
am−1
n−1 + 28am−1

n + am−1
n+1

)
+

1

30

(
bm−1
n−1 − 2/k

)
,

B0
n =

2σm−1
j ε

h2
+ 14/15

(
bm−1
n − 2/k

)
,

B+
n =

−σm−1
j ε

h2
− µ

60h

(
am−1
n−1 + 28am−1

n + am−1
n+1

)
+

1

30

(
bm−1
n+1 − 2/k

)
,

Fmn =
1

30

(
fmn−1 + 28fmn + fmn+1 + fm−1

n−1 + 28fm−1
n + fm−1

n+1

)
,

σmj and σm−1
j are the fitting factors in the (m)th and (m − 1)th time levels,

respectively. Furthermore, multiplying Eq. (21) by h2, it is easily observable
that for sufficiently small h, the off-diagonal entries of the tridiagonal coefficient
matrices are nonzero (the matrices are irreducible) and |A0

n| ≥ |A−n | + |A+
n |,

|B0
n| ≥ |B−n | + |B+

n | (the matrices are diagonally dominant). Hence, by [21],
they are M-matrices and have an inverse. Therefore, the system of equations
can be solved by matrix inverse method.
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2.4. Determination of the fitting factor

From the theory given in [24], in the (m)th time level, Eq. (3) has asymp-
totically expanded solution of the form

(22) Um(x) = Umr (x) + (Um(0)− Umr (0)) exp(−µam(0)x/ε),

and

(23) Um(x) = Umr (x) + (Um(1)− Umr (1)) exp(µam(1)(1− x)/ε),

in the left and right layer respectively, where Umr (x) is the solution of the
reduced problem (when ε = 0):

−µam(x)
dUm(x)

dx
+ qm(x)Um(x) = gm(x).

Left layer fitting factor. Here, we assign j = 0 and from (22), we can have

(24)


Umn = (Ur)

m
1 + (Um1 − (Ur)

m
1 ) exp(−µρam1 n),

Umn−1 = (Ur)
m
1 + (Um1 − (Ur)

m
1 ) exp(−µρam1 (n− 1)),

Umn+1 = (Ur)
m
1 + (Um1 − (Ur)

m
1 ) exp(−µρam1 (n+ 1)),

and

(25)


Um−1
n = (Ur)

m−1
1 +

(
Um−1

1 − (Ur)
m−1
1

)
exp(−µρam−1

1 n),

Um−1
n−1 = (Ur)

m−1
1 +

(
Um−1

1 − (Ur)
m−1
1

)
exp(−µρam−1

1 (n− 1)),

Um−1
n+1 = (Ur)

m−1
1 +

(
Um−1

1 − (Ur)
m−1
1

)
exp(−µρam−1

1 (n+ 1)),

where ρ = h/ε.
Substituting Eqs. (24) and (25) into Eq. (20), multiplying both sides of

Eq. (20) by h, restricting the Taylor series expansion of each coefficient to its
first term, taking the limit as h → 0, and then simplifying successively, we
obtain

(26)


σm0 =

ρµam1
2

coth(
ρµam1

2
),

σm−1
0 =

ρµam−1
1

2
coth(

ρµam−1
1

2
).

Right layer fitting factor. Here, we assign j = 1 and from (23), we arrive at

(27)


Umn = (Ur)

m
N+1 +

(
UmN+1 − (Ur)

m
N+1

)
exp(µamN+1(1/ε− ρn)),

Umn−1 = (Ur)
m
N+1 +

(
UmN+1 − (Ur)

m
N+1

)
exp(µamN+1(1/ε− ρ(n− 1))),

Umn+1 = (Ur)
m
N+1 +

(
UmN+1 − (Ur)

m
N+1

)
exp(µamN+1(1/ε− ρ(n+ 1))),

and

(28)


Um−1
n = (Ur)

m−1
N+1 +

(
Um−1
N+1 − (Ur)

m−1
N+1

)
exp(−µρam−1

N+1n),

Um−1
n−1 = (Ur)

m−1
N+1 +

(
Um−1
N+1 − (Ur)

m−1
N+1

)
exp(−µρam−1

N+1(n− 1)),

Um−1
n+1 = (Ur)

m−1
N+1 +

(
Um−1
N+1 − (Ur)

m−1
N+1

)
exp(−µρam−1

N+1(n+ 1)).
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Following the same fashion we did in the left layer, we get

(29)


σm1 =

ρµamN+1

2
coth(

ρµamN+1

2
),

σm−1
1 =

ρµam−1
N+1

2
coth(

ρµam−1
N+1

2
).

3. Convergence and stability analysis

In this section, the stability and convergence analysis is shown for the scheme
(20).

Lemma 3.1 (Discrete maximum principle). Assume the discrete function Φmn
satisfies Φm1 ≥ 0, ΦmN+1 ≥ 0, and LN,Mε,µ Φmn ≥ 0 on DN

x ×DM
t . Then Φmn ≥ 0

at each point of D
N

x ×D
M

t .

Proof. To follow the proof by contradiction, let there exist a point (ι,m) where
ι ∈ {1, 2, . . . , N + 1} such that

Φmι = min
1≤n≤N+1

Φmn ,

and suppose that Φmι < 0. Then we have ι 6= 1, N + 1. But by using
the assumptions a(x, t) ≥ α and b(x, t) ≥ β, and the series representation
x cothx = 1 + x2/3 + O(x4) for the expressions in Eqs. (26) and (29) into
Eq. (21) we arrive at

LN,Mε,µ Φmι < 0.

This contradicts the assumption LN,Mε,µ Φmn ≥ 0 on DN
x ×DM

t , and then it follows

that Φmn ≥ 0 at each point of D
N

x ×D
M

t . �

This guarantees for the existence of unique discrete solution. The uniform
stability of the discrete solution is discussed as follows.

Lemma 3.2. The solution Umn of the discrete scheme (20) satisfies the follow-
ing bound

(30) ‖Umn ‖ ≤
‖LN,Mε,µ Umn ‖

q∗
+ max

{
‖Um1 ‖, ‖UmN+1‖

}
,

where Q(x, t) = q(x, t) + p(x, t) ≥ Q∗ > 0.

Proof. Let Θ = (‖LN,Mε,µ Umn ‖)/Q∗ + max
{
‖Um1 ‖, ‖UmN+1‖

}
and define barrier

functions as (
ϑ±
)m
n

= Θ± Umn .
The values of these barrier functions on the boundary points are(

ϑ±
)m

1
= Θ± Um1 =

‖LN,Mε,µ Umn ‖
Q∗

+ max
{
‖Um1 ‖, ‖UmN+1‖

}
± Um1 ≥ 0,

(
ϑ±
)m
N+1

= Θ± UmN+1 =
‖LN,Mε,µ Umn ‖

Q∗
+ max

{
‖Um1 ‖, ‖UmN+1‖

}
± UmN+1 ≥ 0,
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and on the discretized domain is

LN,Mε,µ

(
ϑ±
)m
n

= −
(
εσmj
h2

+
µamn−1

30h
−
µamn+1

30h

)(
Θ± Umn−1 − 2(Θ± Umn ) + Θ± Umn+1

)
− µ

30h
{amn−1[−3(Θ± Umn−1) + 4(Θ± Umn )− (Θ± Umn+1)]

+ 28amn [Θ± Umn+1 − (Θ± Umn−1)]}

− µ

30h
amn+1[Θ± Umn−1 − 4(Θ± Umn ) + 3(Θ± Umn+1)]

+
1

30

(
qmn−1(Θ± Umn−1) + 28qmn (Θ± Umn ) + qmn+1(Θ± Umn+1)

)
−

(
εσm−1
j

h2
+
µam−1

n−1

30h
−
µam−1

n+1

30h

)(
Θ± Um−1

n−1 − 2(Θ± Um−1
n ) + Θ± Um−1

n+1

)
− µ

30h
{am−1
n−1 [−3(Θ± Um−1

n−1 ) + 4(Θ± Um−1
n )− (Θ± Um−1

n+1 )]

+ 28am−1
n [Θ± Um−1

n+1 − (Θ± Um−1
n−1 )]}

− µ

30h
am−1
n+1 [Θ± Um−1

n−1 − 4(Θ± Um−1
n ) + 3(Θ± Um−1

n+1 )]

+
1

30

(
pm−1
n−1 (Θ± Um−1

n−1 ) + 28pm−1
n (Θ± Um−1

n ) + pm−1
n+1 (Θ± Um−1

n+1 )
)

=
1

30

(
qmn−1 + 28qmn + qmn+1 + pm−1

n−1 + 28pm−1
n + pm−1

n+1

)
Θ

± 1

30

(
fmn−1 + 28fmn + fmn+1 + fm−1

n−1 + 28fm−1
n + fm−1

n+1

)
≥ 0.

Then by applying the discrete maximum principle given in Lemma 3.1, the
required bound can easily be achieved. �

As a result, the method is uniformly stable in the maximum norm. To
establish a parameter-uniform convergence of the discrete scheme (21) let the
truncation error in the spatial variable, fixing time, be given by

(31)

TEx = A−nU
m
n−1 +A0

nU
m
n +A+

nU
m
n+1

+B−n U
m−1
n−1 +B0

nU
m−1
n +B+

n U
m−1
n+1 − Fmn

=
(
A−nU

m
n−1 +A0

nU
m
n +A+

nU
m
n+1

)
− 1

30

(
fmn−1 + 28fmn + fmn+1

)
+
(
B−n U

m−1
n−1 +B0

nU
m−1
n +B+

n U
m−1
n+1

)
− 1

30

(
fm−1
n−1 + 28fm−1

n + fm−1
n+1

)
.

The Taylor series expansion of each term in space up to third order deriva-
tive and collecting terms with Umn , (U ′)mn , (U ′′)mn , (U ′′′)mn , Um−1

n , (U ′)m−1
n ,
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(U ′′)m−1
n and (U ′′′)m−1

n give

(32)

TEx = ζm0,nU
m
n + ζm1,n(U ′)mn + ζm2,n(U ′′)mn + ζm3,n(U ′′′)mn

+ ζm−1
0,n Um−1

n + ζm−1
1,n (U ′)m−1

n + ζm−1
2,n (U ′′)m−1

n

+ ζm−1
3,n (U ′′′)m−1

n ,

where

ζm0,n = A−n +A0
n +A+

n −
1

30

(
qmn−1 + 28qmn + qmn+1

)
,

ζm1,n = −hA−n + hA+
n +

µ

30

(
amn−1 + 28amn + amn+1

)
+

h

30

(
qmn−1 − qmn+1

)
,

ζm2,n =
h2

2

(
A−n +A+

n

)
− hµ

30

(
amn−1 − amn+1

)
− h2

60

(
qmn−1 − qmn+1

)
+ σmj ε,

ζm3,n = −h
3

2

(
A−n −A+

n

)
+
h2µ

60

(
amn−1 + amn+1

)
+

h3

180

(
qmn−1 − qmn+1

)
,

ζm−1
0,n = B−n +B0

n +B+
n −

1

30

(
pm−1
n−1 + 28pm−1

n + pm−1
n+1

)
,

ζm−1
1,n = −hB−n + hB+

n +
µ

30

(
am−1
n−1 + 28am−1

n + am−1
n+1

)
+

h

30

(
pm−1
n−1 − p

m−1
n+1

)
,

ζm−1
2,n =

h2

2

(
B−n +B+

n

)
− hµ

30

(
am−1
n−1 − a

m−1
n+1

)
− h2

60

(
pm−1
n−1 − p

m−1
n+1

)
+ σm−1

j ε,

ζm−1
3,n = −h

3

2

(
B−n −B+

n

)
+
h2µ

60

(
am−1
n−1 + am−1

n+1

)
+

h3

180

(
pm−1
n−1 − p

m−1
n+1

)
.

Using the coefficients in Eq. (21) and restricting the expansion of each term to
its first term yield

(33)


ζm0,n = ζm1,n = ζm2,n = ζm−1

0,n = ζm−1
1,n = ζm−1

2,n = 0,

ζm3,n =
h2µ

90

(
amn−1 − 14amn + amn+1

)
,

ζm−1
3,n =

h2µ

90

(
am−1
n−1 − 14am−1

n + am−1
n+1

)
.

Using the derivative bound given in Lemma 2.3, this results

(34) ‖TEx‖ ≤ C(h2).

Therefore, the presented method is with second-order accuracy in the spatial
direction. We can also realize that, as the step sizes tend to zero, the errors in
Eqs. (6) and (34) tend to zero. This shows the constructed scheme is consistent.
Moreover, it is also stable as the solution and its derivatives are bounded,
and the error is estimated. Hence, the proposed scheme is convergent. But
the parameter uniform convergence of the proposed scheme is shown by the
following theorem:

Theorem 3.3. Let umn and Umn be solutions of Eqs. (1) and (20), respectively,
at the node (xn, tm). Then the proposed scheme satisfies the following error
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estimate:

(35) sup
0<ε,µ

‖umn − Umn ‖ ≤ C
(
h2 + k2

)
.

Proof. The proof immediate from Lemma 2.5 and Eq. (34). �

Table 1. Comparison of the maximum point-wise error and
rate of convergence for Example 1 for µ = 10−6 and different
values of ε.

ε ↓ N = 32 N = 64 N = 128 N = 256 N = 512
M = 10 M = 20 M = 40 M = 80 M = 160

Current result
10−2 2.9752e-04 7.4609e-05 1.8668e-05 4.6682e-06 1.1672e-06

1.9956 1.9988 1.9996 1.9998
10−4 2.2974e-04 5.7610e-05 1.4413e-05 3.6039e-06 9.0101e-07

1.9956 1.9989 1.9997 1.9999
10−6 2.2902e-04 5.7428e-05 1.4367e-05 3.5925e-06 8.9816e-07

1.9956 1.9990 1.9997 1.9999
10−8 2.2896e-04 5.7406e-05 1.4361e-05 3.5916e-06 8.9802e-07

1.9958 1.9990 1.9995 1.9998
10−10 2.2896e-04 5.7395e-05 1.4353e-05 3.5882e-06 8.9621e-07

1.9961 1.9996 2.0000 2.0014
10−12 2.2896e-04 5.7395e-05 1.4353e-05 3.5882e-06 8.9621e-07

1.9961 1.9996 2.0000 2.0014
Result in [30]
10−2 8.6053e-03 4.4951e-03 2.2857e-03 1.1438e-03 5.7093e-04

0.937 0.976 0.999 1.002
10−4 8.6095e-03 4.4529e-03 2.2631e-03 1.1406e-03 5.7256e-04

0.951 0.976 0.988 0.994
10−6 8.6014e-03 4.4513e-03 2.2628e-03 1.1406e-03 5.7356e-04

0.951 0.976 0.988 0.994
10−8 8.6006e-03 4.4512e-03 2.2628e-03 1.1406e-03 5.7356e-04

0.951 0.976 0.988 0.994
10−10 8.6006e-03 4.4512e-03 2.2628e-03 1.1406e-03 5.7356e-04

0.951 0.976 0.988 0.994
10−12 8.6006e-03 4.4512e-03 2.2628e-03 1.1406e-03 5.7356e-04

0.951 0.976 0.988 0.994

4. Numerical examples and discussion

To illustrate the accuracy and efficiency of the proposed method and verify
the theoretical outcomes experimentally, we have solved the following com-
monly used examples.
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Table 2. Comparison of the maximum point-wise error and
rate of convergence for Example 2 for µ = 10−6 and different
values of ε.

ε ↓ N = 32 N = 64 N = 128 N = 256 N = 512
M = 10 M = 20 M = 40 M = 80 M = 160

Current result
10−2 3.8115e-03 1.0712e-03 2.8461e-04 7.3391e-05 1.8637e-05

1.8311 1.9122 1.9553 1.9774
10−4 3.9321e-03 1.1112e-03 2.9595e-04 7.6409e-05 1.9414e-05

1.8232 1.9087 1.9535 1.9766
10−6 3.9336e-03 1.1117e-03 2.9608e-04 7.6445e-05 1.9423e-05

1.8231 1.9087 1.9535 1.9767
10−8 3.9334e-03 1.1116e-03 2.9603e-04 7.6430e-05 1.9419e-05

1.8231 1.9088 1.9535 1.9767
10−10 3.9334e-03 1.1115e-03 2.9600e-04 7.6401e-05 1.9400e-05

1.8233 1.9088 1.9539 1.9775
10−12 3.9334e-03 1.1115e-03 2.9600e-04 7.6401e-05 1.9400e-05

1.8233 1.9088 1.9539 1.9775
Result in [30]
10−2 3.6825e-02 1.8188e-02 8.5040e-03 4.2227e-03 2.1179e-03

1.018 1.097 1.010 0.995
10−4 3.9442e-02 1.9359e-02 9.5692e-03 4.7539e-03 2.3691e-03

1.027 1.016 1.009 1.005
10−6 3.9402e-02 1.9391e-02 9.5773e-03 4.7594e-03 2.3717e-03

1.023 1.018 1.009 1.005
10−8 3.9418e-02 1.9392e-02 9.5791e-03 4.7594e-03 2.3718e-03

1.023 1.017 1.009 1.005
10−10 3.9418e-02 1.9392e-02 9.5791e-03 4.7594e-03 2.3718e-03

1.023 1.017 1.009 1.005
10−12 3.9418e-02 1.9392e-02 9.5791e-03 4.7594e-03 2.3718e-03

1.023 1.017 1.009 1.005

Example 1. The first example we have considered is given in [30]

∂u

∂t
− ε∂

2u

∂x2
− µ(1 + x)

∂u

∂x
+ u = −16x2(1− x)2,

subject to u(x, 0) = 0, u(0, t) = 0 = u(1, t).

Example 2. Consider the following singular perturbation initial boundary
value problem in [30]

∂u

∂t
− ε∂

2u

∂x2
− µ(1 + exp(x))

∂u

∂x
+ (1 + x5)u = −10 exp(t2)x2(1− x2),

subject to u(x, 0) = 0, u(0, t) = 0 = u(1, t).
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Table 3. Comparison of the maximum point-wise error and
rate of convergence for Example 3 for µ = 10−7 and different
values of ε.

ε ↓ N = 64 N = 128 N = 256 N = 512
M = 16 M = 32 M = 64 M = 128

Current result
10−6 2.6377e-05 6.5877e-06 1.6474e-06 4.1182e-07

2.0014 1.9996 2.0001 1.9999
10−7 2.6377e-05 6.5877e-06 1.6474e-06 4.1182e-07

2.0014 1.9996 2.0001 1.9999
10−8 2.6377e-05 6.5877e-06 1.6474e-06 4.1182e-07

2.0014 1.9996 2.0001 1.9999
10−9 2.6377e-05 6.5877e-06 1.6474e-06 4.1182e-07

2.0014 1.9996 2.0001 1.9999
Result in [10]
10−6 4.6780E-4 1.1982E-4 3.0257E-5 7.5982E-6
10−7 4.6780E-4 1.1982E-4 3.0257E-5 7.5982E-6
10−8 4.6780E-4 1.1982E-4 3.0257E-5 7.5982E-6
10−9 4.6780E-4 1.1982E-4 3.0257E-5 7.5982E-6
Result in [8]
10−6 0.096949e-2 0 .049906e-2 0 .025231e-2 0 .012824e-2

0.95802 0.98400 0.97638 0.99233
10−7 0.098712e-2 0 .050049e-2 0 .025485e-2 0 .012853e-2

0.97987 0.97368 0.98758 0.99493
10−8 0.0951284e-2 0 .050026e-2 0.025237e-2 0 .012781e-2

0.92720 0.98713 0.98156 0.98839
10−9 0.096746e-2 0 .050012e-2 0 .025461e-2 0 .0128036e-2

0.95193 0.97394 0.99186 0.99188

Example 3. Consider the following singular perturbation initial boundary
value problem in [8]

∂u

∂t
− ε∂

2u

∂x2
− µ(1 + x− x2 + t2)

∂u

∂x
+ (1 + 5xt)u = (x2 − x)(et − 1),

subject to u(x, 0) = 0, u(0, t) = 0 = u(1, t).

As the considered examples have no exact solution, we calculate the absolute
maximum errors using the double mesh principle [9] as follows:

EN,Mε,µ = max
1≤n≤N+1,1≤m≤M+1

|UMN − U2M
2N |,

where UMN is an approximate solution obtained using M and N subintervals
in the t and x directions respectively, and U2M

2N is an approximate solution
obtained by bisecting each subinterval. As well, the corresponding numerical
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Figure 1. The numerical solution profile when N = M = 27,
ε = 10−2 and µ = 10−10 for Example 1.
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Figure 2. Log-log plot for Example 1 when µ = 10−6.

rate of convergence is defined by

R =
log(EN,Mε,µ )− log(E2N,2M

ε,µ )

log(2)
.

For µ = 10−6 and different values of ε, the maximum absolute error and nu-
merical rate of convergence for Examples 1 and 2 are given in Tables 1 and 2,
respectively. The numerical solutions of these examples are plotted in Figs. 1
and 3. From the results in these tables, one can observe that the current method
converges independently of the perturbation parameters and gives more accu-
rate numerical results than that of the article [30]. Furthermore, comparison
of our numerical results with the results in [8, 10] is presented in Table 3 and
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Figure 3. The numerical solution profile when N = M = 27,
ε = 10−2 and µ = 10−10 for Example 2.
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Figure 4. Log-log plot for Example 2 when µ = 10−6.

verify the hypothesized result. The solution profile illustrated in Figs. 1, 3 and
5 indicate that the boundary layers occur at the two endpoints of the spatial
domain. The steepness of the boundary layers is equal in Fig. 1, but more
strong on the right and left lateral corner of the spatial domain in Figs. 3 and
5, respectively. From the Log-Log plots, we can conclude that our method
is parameter uniform. In general, the numerical results obtained confirm the
theoretical findings very well.
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Figure 5. The numerical solution profile when N = 64, M =
64, ε = 10−2 and µ = 10−10 for Example 3.
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Figure 6. Log-log plot for Example 3 when µ = 10−7.

5. Conclusion

A parameter uniform numerical scheme is constructed for solving singularly
perturbed parabolic problems whose diffusion and convection terms are mul-
tiplied by small perturbation parameters. Due to the presence of these two
parameters, the solution of the problem exhibits twin boundary layers at both
the lateral surfaces of the rectangular domain. This is demonstrated by taking
numerical examples. To handle the singularity character of the solution in the
inner layers, a fitted operator method is devised which requires neither a priori
information about the location and width of the boundary layers nor the intro-
duction of extremely fine meshes in the layer regions. Moreover, the analysis
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clearly shows the developed method is convergent regardless of the perturba-
tion parameters. The obtained results are more accurate and converge faster
than the results available in the literature.

Remark 5.1. The notable differences of the current manuscript and our previous
paper [19] are given as follows. In the previous paper, the singularity character
of the problem under consideration is controlled by fitting mesh (piecewise
Shishkin mesh, i.e., unequal mesh sizes are used), whereas in this work, it is
controlled by fitting operator (equal mesh sizes are used throughout the domain
and the perturbation parameter is multiplied by the fitting operator). That is
why it is exponentially fitted. Furthermore, the numerical result obtained in
this work is relatively better than the said paper.
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