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Abstract. In this paper, a uniformly convergent numerical scheme is designed for solving

singularly perturbed reaction-diffusion problems. The problem is converted to an equiva-

lent weak form and then a Galerkin finite element method is used on a piecewise uniform

Shishkin mesh with linear basis functions. The convergence of the developed scheme is

proved and it is shown to be almost fourth order uniformly convergent in the maximum

norm. To exhibit the applicability of the scheme, model examples are considered and

solved for different values of a singular perturbation parameter ε and mesh elements. The

proposed scheme approximates the exact solution very well.

1. Introduction

Many physical phenomena are modeled by parameter dependent differential
equations. The behaviour of the solution depends on the magnitude of the parame-
ter. A differential equation in which the highest order derivative term is multiplied
by a small positive parameter ε ∈ (0, 1] is called a singularly perturbed differen-
tial equation and the parameter ε is called singular perturbation parameter [15],
[19]. Singularly perturbed problems (SPPs) arises in the modeling of fluid dy-
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namics, elasticity, quantum mechanics, reaction-diffusion process, chemical-reactor
theory, plasma dynamics, meteorology, diffraction theory, aerodynamics, oceanog-
raphy, modeling of semi-conductor, hydrodynamics and many other similar areas
[4].

The solutions of singularly perturbed differential equation exhibit a multi-scale
character; i.e. there are thin layers or regions of the domain where the solution
changes rapidly or jumps suddenly, forming boundary layers, while away from the
layers the solution behaves regularly or changes slowly in the outer region. As a
result such problems are called boundary layer problems [5]. Due to the multi-scale
character of the solution, classical numerical methods such as FDM, FEM and the
collocation method are inefficient. This happens since the error estimates of numer-
ical methods depend explicitly on the derivatives of the solution and the derivatives
are unbounded as ε → 0 [20]. Early numerical solutions of singularly perturbed
differential equations were obtained using a standard finite difference method on a
uniform mesh. In this approach, as the perturbation parameter decreases in mag-
nitude the mesh needs to be refined sufficiently to capture the boundary layer(s).
Hence, such methods are inefficient and inaccurate.

A numerical solution U is said to be ε-uniformly convergent to the exact solution
u, if there exist a positive integer N0 and positive numbers C and p, where N0, C
and p are all independent of N and ε, such that, for all N > N0, sup0<ε≤1‖U−u‖ ≤
CN−p. Here p is the order of the method and N is number of mesh elements [11],
[12].

Different authors have developed several numerical methods for solving singu-
larly perturbed reaction-diffusion problems. Some of these can be found in [4], [5],
[6, 7], and [22]. The results in these papers are good in terms of the value of ε and
mesh size h. The main drawback of the schemes in the above listed papers is that
the methods fail to give good results as ε → 0, which means that the methods are
not ε-uniformly convergent. The recent papers [2], [3], [10], [13, 14], [16] and [17]
contain ε-uniform numerical methods developed for solving singularly perturbed
reaction-diffusion problems.

In this paper, we developed a fitted mesh finite element method with Richard-
son extrapolation for solving second order singularly perturbed two point boundary
value problems of the reaction-diffusion type. The proposed method involves divid-
ing the domain of the solution into a finite number of elements and using variational
concepts to construct an approximate solution over the collection of elements. The
main reason behind seeking an approximate solution on a collection of sub-domains
is the fact that it is easier to represent a complicated function as a collection of
simple polynomials [1], [18]. Most numerical methods developed so far for solving
singularly perturbed reaction-diffusion problems are not parameter-uniformly con-
vergent. So developing a higher order numerical method whose convergence does
not depend on the perturbation parameter has a great importance to the scien-
tific research area[9]. This paper deals with formulating a higher order uniformly
convergent method to find numerical solution of singularly perturbed 1D reaction-
diffusion problems.
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Notations. In this paper, N denotes the number of mesh elements and C is a pos-
itive constant independent of ε and N . The notation ‖·‖ denotes maximum norm.

2. Description of the Problem

Consider a class of singularly perturbed reaction-diffusion problems of the form:

(2.1) −εd
2u(x)

dx2
+ b(x)u(x) = f(x), x ∈ Ω = (0, 1)

subjected to the boundary conditions

(2.2) u(0) = α, u(1) = γ,

where 0 < ε � 1 is the singular perturbation parameter and α and γ are given
constants. Assume that the functions f(x) and b(x) are sufficiently smooth and
b(x) ≥ β > 0 for some constant β. As the problem is of the reaction-diffusion type,
the condition b(x) ≥ β > 0 ensure the existence of dual boundary layers near the
two end points of the solution domain.

2.1. Properties of the exact solution
Let us denote the differential equation in (2.1)-(2.2) by the differential operator L

as L = −ε d
2

dx2 + b(x). The considered singularly perturbed problem in (2.1)-(2.2)
satisfies the maximum principle.

Lemma 2.1. Assume that ψ(0) ≥ 0 and ψ(1) ≥ 0. Then, Lψ(x) ≥ 0,∀x ∈ Ω,
implies that ψ(x) ≥ 0, ∀x ∈ Ω̄.

Proof. Assume that there exists x∗ ∈ Ω̄ = [0, 1] such that ψ(x) ∈ C2(Ω) ∪ C0(∂Ω)
and ψ(x∗) = minΩ̄ ψ(x) < 0. Thus, from the conditions given on the boundaries,
it is clear that x∗ /∈ {0, 1} which implies that x∗ ∈ (0, 1). It follows from the

assumption that d
dxψ(x∗) = 0 and d2

dx2ψ(x∗) ≥ 0.

Consequently, Lψ(x∗) = −ε d
2

dx2ψ(x∗) + b(x)ψ(x∗) < 0. This is a contradiction and
hence we can conclude that ψ(x) ≥ 0, ∀x ∈ Ω̄.

The next lemma gives a bound on the derivatives of the solution of the consid-
ered problem.

Lemma 2.2. Let u(x) ∈ C2(Ω) ∪ C0(∂Ω) be the solution of the problem in (2.1)-
(2.2). Then, its derivatives satisfies the bound

(2.3)

∣∣∣∣dku(x)

dxk

∣∣∣∣ ≤ C(1 + ε−
k
2 (e−x

√
β
ε + e−(1−x)

√
β
ε )
)
, x ∈ Ω, k = 0, 1, ..., 4.

Proof. The proof is carried out by constructing barrier functions and applying the
maximum principle. The details of the proof is given in Appendix section.
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Sharper bounds on the solution and its derivatives are required in the proof
of the error estimates. To do that, the solution u of (2.1)-(2.2) is decomposed as
u = v + wL + wR, where v denote the regular component of the solution and wL
and wR respectively denotes the left and right singular components of the solution.
This decomposition is known as Shishkin decomposition [12].

Lemma 2.3. The derivatives of the regular component solution satisfies the bound

(2.4)

∣∣∣∣dkv(x)

dxk

∣∣∣∣ ≤ C(1 + ε−
(k−2)

2 ), ∀x ∈ Ω̄, k = 0, 1, ..., 4.

and the derivatives of the singular components solution satisfies the bound∣∣∣∣dkwL(x)

dxk

∣∣∣∣ ≤ Cε−k2 e−x√ β
ε , ∀x ∈ Ω̄, k = 0, 1, ..., 4.∣∣∣∣dkwR(x)

dxk

∣∣∣∣ ≤ Cε−k2 e−(1−x)
√

β
ε , ∀x ∈ Ω̄, k = 0, 1, ..., 4.

(2.5)

Proof. The detail proof is given in Appendix section.

3. Numerical Scheme Formulation

3.1. Finite element method on Shishkin mesh

Let H1
0 denote the set of all functions whose order 1 or less is square integrable over

Ω̄ = [0, 1] and vanishes at the end point of the domain. Using the weak formulation,
we rewrite (2.1)-(2.2) as

(3.1) B(u, v) = L(v),

where

B(u, v) =

∫ 1

0

[ε
du(x)

dx

dv(x)

dx
+ b(x)u(x)v(x)]dx,

and

L(v) =

∫ 1

0

f(x)v(x)dx,

so that B(u, v) is a bilinear function in u and v and L(v) is a linear functional of v,
∀v ∈ H1

0 . We call (3.1) is weak form (or variational form) of (2.1)-(2.2). Interested
reader can refer the weak formulation of boundary value problems in [1].

Since the considered problem exhibits two boundary layers on the left and right
side, the domain Ω̄ = [0, 1] is subdivided into boundary layer regions (0, τ) and
(1 − τ, 1) and outer layer region (τ, 1 − τ). In this paper, we use the Shishkin
piece-wise uniform mesh in order to have more mesh points in the boundary layer
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regions. Let N be the number of elements on the domain Ω̄, then we define mesh
discretization as Ω̄Nτ = {xi}N+1

i=1 with hi+1 = xi+1 − xi for i = 1, 2, 3, ..., N + 1.
The sub-domains (0, τ) and (1− τ, 1) are discretized into N

4 mesh elements and the

sub-domain (τ, 1− τ) is discretized into N
2 mesh elements as

(3.2) xi =


4τ( iN ), i = 1, 2, ..., N/4,

2(1− 2τ)( iN ), i = N/4 + 1, ..., 3N/4,

4τ( iN ), i = 3N/4 + 1, ..., N + 1,

where τ is the Shishkin mesh transition parameter given by

(3.3) τ = min

{
1

4
, 2

√
ε

β
lnN

}
.

The mesh size hi in each subdomain is given by

(3.4) hi =

{
4τ
N , i = 1, 2, ..., N/4, and, i = 3N/4 + 1, ..., N,
2(1−2τ)

N , i = N/4 + 1, ..., 3N/4.

Using the mesh points in (3.2), we construct a set of piecewise linear basis function
φi(x) ∈ H1

0 of the form;

(3.5) φi(x) =


x−xi−1

hi
if xi−1 < x < xi,

xi+1−x
hi+1

if xi < x < xi+1,

0 otherwise,

for i = 1, 2, ..., N , which are often called the hat functions.
Let us consider a typical element Ωeτ = [xe1, x

e
2] from the domain ΩNτ using the

above discretization. Here e denote the element number and xe1 and xe2 denote the
left and right end of the element Ωeτ . Thus, the weak form of the problem over each
element is given as

(3.6)

∫ xe2

xe1

[ε
due(x)

dx

dv(x)

dx
+ b(x)ue(x)v(x)]dx =

∫ xe2

xe1

f(x)v(x)dx,

where ue(x) is denoted for the restriction of u(x) on the element Ωeτ = [xe1, x
e
2].

Representing the numerical solution by the linear combination of the basis function
on each element as

(3.7) ueN (x) =

Ne∑
j=1

cejφ
e
j(x),

where the coefficients cej are unknowns to be determined, Ne is the number of nodes
in Ωeτ and φej(x) are the basis functions on the element Ωeτ . Differentiating (3.7)
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once gives

(3.8)
dueN (x)

dx
=

Ne∑
j=1

cej
dφej(x)

dx
.

Plugging the approximate solution in (3.7) and its derivative in (3.8) into (3.6) gives

(3.9)

∫ xe2

xe1

[

Ne∑
j=1

(ε
dφej(x)

dx

dv(x)

dx
+ b(x)φej(x)v(x))cej ]dx =

∫ xe2

xe1

f(x)v(x)dx.

Applying Galerkin method i.e. taking the test function v(x) = φei (x) for i = 1, 2
gives

(3.10)

∫ xe2

xe1

[

Ne∑
j=1

(ε
dφej(x)

dx

dφei (x)

dx
+ b(x)φej(x)φei (x))cej ]dx =

∫ xe2

xe1

f(x)φei (x)dx,

where φei (x) are a piecewise linear base functions. We rewrite (3.10) as

(3.11)

Ne∑
j=1

kei,jc
e
j = fei for i = 1, 2,

where

(3.12) kei,j =

∫ xe2

xe1

ε
dφej(x)

dx

dφei (x)

dx
+ b(x)φej(x)φei (x)dx,

called the stiffness matrix and

(3.13) fei =

∫ xe2

xe1

f(x)φei (x)dx,

called the load vector.
Since the base functions are linear, each element Ωeτ has two nodes (i.e. degree

of freedom) and there are two equations per element of the form

ke11c
e
1 + ke12c

e
2 = fe1 ,

ke21c
e
1 + ke22c

e
2 = fe2 .

(3.14)

Here, the subscripts 1 and 2 are labels of the endpoint nodes on a typical element
Ωτe . These subscripts are to be relabeled upon assembling the elements so as to
coincide with appropriate nodes 1, 2, 3, ..., N + 1 in the final mesh. The equations
on the entire elements assembled as follows. Since the mesh contain N elements
and N + 1 nodes, we have N + 1 equations in N + 1 degree of freedom describing
the assembled system of elements.
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The linear system of equations for the entire mesh becomes

(3.15)



K11 K12 0 . . . 0 0
K21 K22 K23 . . . 0 0

0 K32 K33 . . . 0 0
0 0 K43 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . KN,N KN,N+1

0 0 0 . . . KN+1,N KN+1,N+1





c1
c2
c3
c4
...
cN
cN+1


=



F1

F2

F3

F4

...
FN
FN+1


where

(3.16)



K11 = k1
11,K12 = k1

12,
K21 = k1

21,K22 = k1
22 + k2

11,K23 = k2
12,

...

KN,N−1 = kN−1
21 ,KN,N = kN−1

22 + kN11,
KN,N+1 = kN12, KN+1,N = kN21,KN+1,N+1 = kN22,

and

(3.17)



F1 = f1
1 ,

F2 = f1
2 + f2

1 ,
...

FN = fN−1
2 + fN1 ,

FN+1 = fN2 .

Applying the boundary conditions uN (0) = α and uN (1) = γ then N − 1 unknown
nodal values c2, c3, c4,..., cN remain. The equation in (3.15) reduces to N − 1
system of equations as

(3.18)


K22 K23 0 . . . 0 0
K32 K33 K34 . . . 0 0

0 K43 K44 . . . 0 0
...

...
...

... . . .
...

0 0 0 . . . KN,N−1 KN,N




c2
c3
c4
...
cN

 =


F2 −K21α

F3

F4

...
FN −KN,N+1γ


and the two auxiliary equation corresponding to nodes 1 and N + 1 are

K11α+K12c1 = F1,

KN+1,NcN+1+KN+1,N+1γ = FN+1.

(3.19)

3.2. Stability of the scheme
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From (3.16) we see that the entries of the stiffness matrix in (3.18) are given by

Ki,i−1 = ki−1
21 =

∫ xi

xi−1

[
εφ′i(x)φ′i−1(x) + b(x)φi(x)φi−1(x)

]
dx,

Ki,i = ki−1
22 + ki11 =

∫ xi

xi−1

[
ε
(
φ′i(x)

)2
+ b(x)(φi(x))2

]
dx

+

∫ xi+1

xi

[
ε
(
φ′i(x)

)2
+ b(x)(φi(x))2

]
dx,

Ki,i+1 = ki12 =

∫ xi+1

xi

[
εφ′i(x)φ′i+1(x) + b(x)φi(x)φi+1(x)

]
dx.

On each row of the matrix in (3.18), we obtain Ki,i−1 < 0, Ki,i+1 < 0 and Ki,i > 0
since φi(x) and φi+1(x) are linear polynomials with oppositely signed slopes. In
addition, for each row i = 2, 3, ..., N it satisfies the diagonal dominance ([23], page
152)

|Ki,i−1|+|Ki,i+1| ≤|Ki,i|.

So, the reduced stiffness matrix in (3.18) satisfies the criteria of M -matrix. Hence,
it is nonsingular. This guarantees the stability of the scheme. So, the unknown
nodal values c2, c3, c4,..., cN are solved easily using Thomas algorithm [1].

3.3. Convergence analysis of the scheme

In this section, we prove the uniform convergence of the developed scheme using
the maximum norm. The next theorem gives the ε-uniform or parameter uniform
error bound of the scheme in the maximum norm.

Theorem 3.1. Let Ui be the numerical solution and u(xi) be exact solution of the
problem in (2.1)-(2.2) on the Shishkin mesh Ω̄Nτ . Then

(3.20) sup
0<ε≤1

‖Ui − u(xi)‖ ≤ CN−2(lnN)2,

where C is a constant independent of ε and N .

Proof. The bound is obtained separately on each element Ωi = [xi−1, xi]. Note
that for any function g on Ωi, we write the approximate solution using the basis
functions φi(x) as

ḡ(x) = φi−1(x)g(xi−1) + φi(x)g(xi),

so that on each Ωi we have

‖ḡ(x)‖ ≤ max
Ωi
|g(x)|.
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Using Taylor series expansion the interpolation error on Ωi given by

(3.21) ‖ḡ(xi)− g(xi)‖ ≤ Ch2
i max

Ωi

∣∣∣∣d2g(xi)

dx2

∣∣∣∣+ Ch4
i max

Ωi

∣∣∣∣d4g(xi)

dx4

∣∣∣∣,
giving the error in the weak form as (for detail see on [23], Theorem 7.11)

B(ḡ(xi)− g(xi),ḡ(xi)− g(xi)) =

∫ 1

0

[ε(ḡ′(xi)− g′(xi))2 + b(x)(ḡ(xi)− g(xi))
2]dx

≤max {ε, max
xi∈[0,1]

b(xi)}
∫ 1

0

[(ḡ′(xi)− g′(xi))2 + (ḡ(xi)− g(xi))
2]dx

≤Ch2
i max

Ωi

∣∣∣∣d2g(xi)

dx2

∣∣∣∣+ Ch4
i max

Ωi

∣∣∣∣d4g(xi)

dx4

∣∣∣∣.
Using Lemma 1.2, we obtain

B(Ui − u(xi), Ui − u(xi)) ≤Ch2
i max

Ωi

∣∣∣∣d2u(xi)

dx2

∣∣∣∣+ Ch4
i max

Ωi

∣∣∣∣d4u(xi)

dx4

∣∣∣∣
≤Ch2

i (1 + ε−1) + Ch4
i (1 + ε−2).

(3.22)

Since the coefficient matrix is invertible from stability condition, so we have

‖Ui − u(xi)‖≤ Ch2
i (1 + ε−1) + Ch4

i (1 + ε−2).(3.23)

Similar to the decomposition of continuous solution we decompose the approximate
solution as

(3.24) Ui = Vi +WL,i +WR,i.

Using the decomposition in (3.24) and Lemma 1.3, we obtain

‖Ui − u(xi)‖ ≤ ‖Vi − v(xi)‖+‖WL,i − wL(xi)‖+‖WR,i − wR(xi)‖

≤ Ch2
i max

Ωi

∣∣∣∣d2v(xi)

dx2

∣∣∣∣+ 2 max
Ωi
|wL(xi)|+ 2 max

Ωi
|wR(xi)|

≤ C[h2
i + e−xi

√
β
ε + e−(1−xi)

√
β
ε ].

Now, the argument depends on the parameter τ . That is, whether τ = 1
4 or

τ = 2
√

ε
β lnN . In case τ = 1

4 ≤ 2
√

ε
β lnN which implies 1

ε ≤
C
β (lnN)2. Here

since the mesh is uniform, we have hi = N−1 implying that h2
i = N−2. Thus using

(3.23), it follows that

(3.25) ‖Ui − u(xi)‖≤
Ch2

i

ε
≤ CN−2(lnN)2.
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In the second case, we have τ = 2
√

ε
β lnN ≤ 1

4 which implies 1
ε ≥

C
β (lnN)2. We

consider separately the inner layer regions and the outer layer region.
Case 1: For the inner layer (boundary layer) regions. That is for 1 ≤ i ≤ N

4 and
3N
4 + 1 ≤ i ≤ N then

hi =
4τ

N
= 4N−1

√
ε

β
(lnN) implies

h2
i

ε
= CN−2(lnN)2.

Now using (3.23) it follows that

‖WL,i − wL(xi)‖≤ CN−2(lnN)2,

‖WR,i − wR(xi)‖≤ CN−2(lnN)2.

(3.26)

Case 2: For the outer layer region. For N
4 + 1 ≤ i ≤ 3N

4 then τ ≤ 1 − xi so that

e−(1−xi)
√

β
ε ≤ N−2. Similarly e−xi

√
β
ε ≤ N−2 since τ ≤ xi which implies that

(3.27) ‖Vi − v(xi)‖≤ CN−2.

Then combining the outer layer region bound, left and right boundary layer bounds
in (3.25), (3.26) and (3.27) gives
(3.28)
‖Ui − u(xi)‖≤ ‖Vi − v(xi)‖+‖WL,i − wL(xi)‖+‖WR,i − wR(xi)‖ ≤ CN−2(lnN)2.

Since the right side of (3.28) is independent of ε, taking suprimum on both sides of
(3.28) we obtain the required bound.

sup
0<ε≤1

‖Ui − u(xi)‖ ≤ CN−2(lnN)2.

3.4. Richardson extrapolation

The aim of the Richardson extrapolation is to increase the order of convergence
by combining the discrete solutions calculated on different meshes. For detail anal-
ysis of Richardson extrapolation on fitted mesh one can refer [21]. To apply the
technique, we solve the discrete problem (3.18) on the fine mesh element Ω̄2N

τ with
2N mesh-intervals on piecewise Shishkin mesh having the same transition points τ .
The corresponding mesh widths in Ω̄2N

τ becomes

(3.29) ĥi =


4τ
2N , i = 1, 2, ..., N/2,
2(1−2τ)

2N , i = N/2 + 1, ..., 3N/2,
4τ
2N , i = 3N/2 + 1, ..., 2N.
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Let denote UNi and U2N
i an approximate solution on N and 2N number of mesh

elements respectively. From (3.23) we have

(3.30) |u(xi)− UNi | ≤
Ch2

i

ε
+
Ch4

i

ε2
.

So, we have

|u(xi)− UNi |=|V Ni − v(xi)|+|WN
L,i − wL(xi)|+|WN

R,i − wR(xi)|
≤CN−2(lnN)2 + CN−4(lnN)4.

(3.31)

since 1
ε ≤

C
β (lnN)2. In similar manner on double number of mesh elements 2N

|u(xi)− U2N
i |=|V 2N

i − v(xi)|+|W 2N
L,i − wL(xi)|+|W 2N

R,i − wR(xi)|
≤C(N/2)−2(ln(N/2))2 + C(N/2)−4(ln(N/2))4.

(3.32)

Combining (3.31) and (3.32) for eliminating the term N−2(lnN)2 gives

(3.33) Uexti =
4U2N

i − Ui
3

,

which is the Richardson extrapolated approximate solution. The error for the ap-
proximate solution in (3.33) becomes

(3.34) sup
0<cε�1

‖u(xi)− Uexti ‖≤ CN−4(lnN)4.

4. Numerical Results and Discussion

To verify the established theoretical results in this paper, we perform an exper-
iment using the proposed numerical scheme on the problem of the form given in
(2.1)-(2.2)

Example 4.1. Consider the singularly perturbed problem

−εd
2u(x)

dx2
+ u(x) = 1 + 2

√
ε[e

(−x√
ε

)
+ e

( x−1√
ε

)
]

with the boundary conditions u(0) = 0, u(1) = 0. Its exact solution is u(x) =

1− xe( x−1√
ε

) − (1− x)e
(−x√

ε
)
.

Example 4.2. Consider the singularly perturbed problem

−εd
2u(x)

dx2
+ u(x) = 1

with the boundary conditions u(0) = 0, u(1) = 0. Its exact solution is u(x) =

1− e(−x√
ε

) − e(
−(1−x)√

ε
)
.
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The maximum absolute error is calculated using

ENε = max|Ui − u(xi)|.

The ε-uniform error is calculated using

EN = max
ε

(ENε ).

The rate of convergence is given as

rNε =
logENε − logE2N

ε

log 2
.

(a) (b)

Figure 1: Solutions profile with boundary layer formation as ε goes small on
(a) Example 4.1 on (b) Example 4.2.

Table 1: Maximum absolute error of Example 4.1 in inner layer(I) and outer
layer(O) region before Richardson extrapolation.
ε ↓ N=24 25 26 27 28 29

10−3 I 2.0159e-02 7.0588e-03 2.5475e-03 8.6985e-04 2.5648e-04 6.4050e-05
O 3.0700e-03 9.2902e-04 2.1628e-04 2.7825e-05 1.8248e-06 4.5649e-07

10−4 I 1.8932e-02 6.6543e-03 2.3997e-03 8.1752e-04 2.6683e-04 8.4387e-05
O 3.9895e-03 2.4233e-03 1.0726e-03 3.5717e-04 1.1995e-04 3.9066e-05

10−5 I 1.8545e-02 6.5265e-03 2.3530e-03 8.0097e-04 2.6155e-04 8.2713e-05
O 4.1588e-03 2.5426e-03 1.2422e-03 5.2323e-04 1.8505e-04 6.4679e-05

10−6 I 1.8422e-02 6.4861e-03 2.3383e-03 7.9574e-04 2.5988e-04 8.2183e-05
O 4.2122e-03 2.5745e-03 1.2593e-03 5.3739e-04 2.1131e-04 7.7506e-05

10−7 I 1.8383e-02 6.4733e-03 2.3336e-03 7.9408e-04 2.5935e-04 8.2016e-05
O 4.2292e-03 2.5846e-03 1.2647e-03 5.3998e-04 2.1258e-04 7.9837e-05

EN 1.8365e-02 6.4674e-03 2.3314e-03 7.9332e-04 2.5911e-04 8.1938e-05
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Table 2: Maximum absolute error of Example 4.1 in inner layer(I) and outer
layer(O) region after Richardson extrapolation.
ε ↓ N=24 25 26 27 28 29

10−3 I 7.0588e-03 8.6985e-04 6.4050e-05 4.0017e-06 2.5010e-07 1.5632e-08
O 9.2902e-04 2.7825e-05 4.5649e-07 2.8536e-08 1.7837e-09 1.6811e-10

10−4 I 6.6543e-03 8.1752e-04 8.4387e-05 7.8780e-06 6.8770e-07 5.7247e-08
O 2.4233e-03 3.5717e-04 3.9066e-05 4.0666e-06 4.1394e-07 4.0840e-08

10−5 I 6.5265e-03 8.0097e-04 8.2713e-05 7.7212e-06 6.7399e-07 5.6058e-08
O 2.5426e-03 5.2323e-04 6.4679e-05 6.7397e-06 4.1874e-07 4.0911e-08

10−6 I 6.4861e-03 7.9574e-04 8.2183e-05 7.6716e-06 6.6967e-07 5.5682e-08
O 2.5745e-03 5.3739e-04 7.7506e-05 6.7231e-06 4.1681e-07 4.4345e-08

10−7 I 6.4733e-03 7.9408e-04 8.2016e-05 7.6559e-06 6.6828e-07 5.5642e-08
O 2.5846e-03 5.3998e-04 7.9837e-05 6.7231e-06 4.1681e-07 4.4345e-08

EN 7.0588e-03 8.6985e-04 8.4387e-05 7.8536e-06 6.6828e-07 5.5642e-08

Table 3: Example 4.1, Comparison of maximum absolute error.
ε ↓ N= 24 25 26 27 28 29

Proposed Scheme
2−12 7.0588e-03 8.6985e-04 6.4050e-05 4.0017e-06 2.5010e-07 1.5632e-08
2−16 6.6543e-03 8.1752e-04 8.4387e-05 7.8780e-06 6.8770e-07 5.7247e-08
2−20 7.0588e-03 8.6985e-04 8.4387e-05 7.8536e-06 6.6828e-07 5.5642e-08
2−25 7.0588e-03 8.6985e-04 8.4387e-05 7.8536e-06 6.6828e-07 5.5642e-08

Result in [8]
2−12 4.245e-03 1.957e-03 5.262e-04 1.227e-04 3.012e-05 7.496e-06
2−16 1.302e-03 1.292e-03 1.061e-03 4.893e-04 1.315e-04 3.068e-05
2−20 3.255e-04 3.255e-04 3.255e-04 3.231e-04 2.653e-04 1.223e-04
2−25 5.754e-05 5.754e-05 5.754e-05 5.754e-05 5.754e-05 5.752e-05

Table 4: Rate of convergence of Example 4.1 before and after Richardson
extrapolation.

ε ↓ N=24 25 26 27 28

Before RE
2−12 1.5100 1.4719 1.5518 1.6157 1.6610
2−16 1.5072 1.4749 1.5513 1.6149 1.6608
2−20 1.5059 1.4758 1.5512 1.6143 1.6611
2−25 1.5061 1.4760 1.5513 1.6145 1.6607

After RE
2−12 3.0206 3.7635 4.0005 4.0000 3.9999
2−16 3.0250 3.2762 3.4211 3.5180 3.5865
2−20 3.0206 3.3657 3.4256 3.5548 3.5862
2−25 3.0206 3.3657 3.4256 3.5548 3.5862
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Table 5: Maximum absolute error of Example 4.2 in inner layer (I) and outer
layer(O) region before Richardson extrapolation.
ε ↓ N=24 25 26 27 28 29

10−3 I 1.8365e-02 6.4674e-03 2.3314e-03 7.9332e-04 2.3420e-04 5.8489e-05
O 3.3885e-03 1.1233e-03 2.6567e-04 3.5484e-05 1.8514e-06 4.6313e-07

10−4 I 1.8365e-02 6.4674e-03 2.3314e-03 7.9332e-04 2.5911e-04 8.1938e-05
O 4.2368e-03 2.5689e-03 1.1405e-03 3.8306e-04 1.2970e-04 4.2701e-05

10−5 I 1.8365e-02 6.4674e-03 2.3314e-03 7.9332e-04 2.5911e-04 8.1938e-05
O 4.2370e-03 2.5893e-03 1.2671e-03 5.3499e-04 1.8961e-04 6.6528e-05

10−6 I 1.8365e-02 6.4674e-03 2.3314e-03 7.9332e-04 2.5911e-04 8.1938e-05
O 4.2370e-03 2.5893e-03 1.2672e-03 5.4118e-04 2.1300e-04 7.8195e-05

10−7 I 1.8365e-02 6.4674e-03 2.3314e-03 7.9332e-04 2.5911e-04 8.1938e-05
O 4.2370e-03 2.5893e-03 1.2672e-03 5.4118e-04 2.1311e-04 8.0063e-05

EN 1.8365e-02 6.4674e-03 2.3314e-03 7.9332e-04 2.5911e-04 8.1938e-05

Table 6: Maximum absolute error of Example 4.2 in inner layer (I) and outer
layer(O) region after Richardson extrapolation.
ε ↓ N=24 25 26 27 28 29

10−3 I 6.4674e-03 7.9332e-04 5.8489e-05 3.6546e-06 2.2841e-07 1.4276e-08
O 1.1233e-03 3.5484e-05 4.6313e-07 2.8951e-08 1.8096e-09 1.6806e-10

10−4 I 6.4674e-03 7.9332e-04 8.1938e-05 7.6487e-06 6.6766e-07 5.5580e-08
O 2.5689e-03 3.8306e-04 4.2701e-05 4.5447e-06 4.7328e-07 4.7806e-08

10−5 I 6.4674e-03 7.9332e-04 8.1938e-05 7.6487e-06 6.6766e-07 5.5531e-08
O 2.5893e-03 5.3499e-04 6.6528e-05 8.0126e-06 9.5752e-07 1.1448e-07

10−6 I 6.4674e-03 7.9332e-04 8.1938e-05 7.6487e-06 6.6766e-07 5.5515e-08
O 2.5893e-03 5.4118e-04 7.8195e-05 9.6277e-06 1.1834e-06 1.4564e-07

10−7 I 6.4674e-03 7.9332e-04 8.1938e-05 7.6487e-06 6.6765e-07 5.5590e-08
O 2.5893e-03 5.4118e-04 8.0063e-05 1.0292e-05 1.2827e-06 1.5936e-07

EN 2.5893e-03 5.4118e-04 8.1938e-05 1.0292e-05 1.2827e-06 1.5936e-07
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Table 7: Rate of convergence of Example 4.2 before and after Richardson
extrapolation.

ε ↓ N=24 25 26 27 28

Before RE
10−3 1.5057 1.4721 1.5550 1.6144 1.7602
10−4 1.5057 1.4721 1.5550 1.6144 1.6609
10−5 1.5057 1.4721 1.5550 1.6144 1.6609
10−6 1.5057 1.4721 1.5550 1.6144 1.6609
10−7 1.5057 1.4721 1.5550 1.6144 1.6609

After RE
10−3 3.0272 3.7617 4.0004 4.0000 4.0000
10−4 3.0272 3.2753 3.4212 3.5180 3.5865
10−5 3.0272 3.2753 3.4212 3.5180 3.5877
10−6 3.0272 3.2753 3.4212 3.5180 3.5877
10−7 3.0272 3.2753 3.4212 3.5180 3.5877

(a) (b)

Figure 2: Numerical and Exact solutions of Example 4.1 for ε = 2−20 and
N = 64, (a) on uniform mesh, (b) on Shishkin mesh.

The maximum absolute error of Example 4.1 and 4.2 before Richardson extrap-
olation is given in Tables 1 and 5 respectively for different values of singular pertur-
bation parameter. In these tables the result are computed for the inner boundary
layers(I) and outer boundary layer(O) region separately. Similarly, in Tables 2 and
6 the maximum absolute error of Example 4.1 and 4.2 after Richardson extrapola-
tion is given respectively. On these tables one can observe that, as ε goes small the
maximum absolute error for inner layer and outer layer region becomes stable and
bounded. This indicates that maximum absolute error of the scheme is independent
of the perturbation parameter ε, implying that the scheme is ε-uniformly conver-
gent. One can observe from these tables, the method with Richardson extrapolation
is more accurate than that of before the Richardson extrapolation. In Table 3, we
compare the result of the proposed scheme with the results in [8]. As one observes
in this table the proposed scheme gives more accurate result. In Tables 4 and 7,
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(a) (b)

Figure 3: Numerical and Exact solutions of Example 4.2 for N = 64 and
ε = 10−4, (a) on uniform mesh, (b) on Shishkin mesh.

(a) (b)

Figure 4: The graph of maximum absolute error versus the number of ele-
ments, using Log-Log scale plot on (a) Example 4.1, on (b) Example 4.2.

the rate of convergence of the proposed scheme before and after Richardson extrap-
olation is given. The proposed scheme before extrapolation is almost second order
uniformly convergent and the scheme after the extrapolation gives almost fourth
order uniform convergence. The computed result is in good agreement with the
theoretical finding.

In Figure 1, the profile of the solutions is given for different values of the per-
turbation parameter ε = 2−4, 2−8 and 2−12 with boundary layer formulation with
layer thickness of O(

√
ε) as ε goes small. In Figures 2 and 3, we plot the computed

solutions of Example 4.1 and 4.2 on uniform mesh and Shishkin mesh. In Figures
2(a) and 3(a), the computed solution oscillates in the boundary layer regions while
using uniform mesh, whereas in case of Shishkin mesh the exact and computed so-
lution agree well in the boundary layer regions. In addition to that, one observes
in Figures 2(b) and 3(b), sufficient number of mesh points exist in the boundary
layer region for ε = 2−20 and N = 64. This indicate layer resolving property of the
developed scheme. In Figure 4, the Log-Log scale plot of maximum absolute error
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versus the number of meshes points are given for different values of the perturbation
parameter ε ranging from 2−12 to 2−25.

5. Conclusion

Uniformly convergent finite element method with Richardson extrapolation
technique is presented for solving singularly perturbed reaction-diffusion problems.
The stability of the scheme is discussed. Theoretically the scheme is shown ε-
uniformly convergent with order of convergence almost two before Richardson ex-
trapolation. After the extrapolation technique is applied the order of convergence
of the scheme is accelerated to almost four. Model examples are considered by tak-
ing different values for ε and the results are presented in tables and graphs. The
obtained result shows that the proposed method is uniformly convergent, approxi-
mate the exact solution very well and is in a good agreement with the theoretical
results of the analysis. The proposed scheme also works well for variable coefficient
problems.

Acknowledgements. The author would like to thank the referees for their con-
structive comments and suggestions.
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Appendix: Proof of the Lemmas

Lemma 2.2. Let u(x) ∈ C2(Ω) ∪ C0(∂Ω) be the solution of the problem in (2.1)-(2.2).
Then, its derivatives satisfies the bound

(5.1)

∣∣∣∣dku(x)

dxk

∣∣∣∣ ≤ C(1 + ε−
k
2 (e−x

√
β
ε + e−(1−x)

√
β
ε )
)
, x ∈ Ω, k = 0, 1, ..., 4.

Proof. We prove first for the case k = 0. Consider the barrier functions ψ±(x) = 1
β
‖f‖+

max{|α|, |γ|} ± u(x). At x = 0, we have

ψ±(0) =
1

β
‖f‖+ max{|α|, |γ|} ± u(0) ≥ 1

β
‖f‖ ≥ 0, since max{|α|, |γ|} ≥ u(0).

At x = 1, we have

ψ±(1) =
1

β
‖f‖+ max{|α|, |γ|} ± u(1) ≥ 1

β
‖f‖ ≥ 0, since max{|α|, |γ|} ≥ u(1).

Then, for the differential operator

Lεψ
±(x) = −ε(ψ±(x))′′ + b(x)ψ±(x)

= ∓(εu′′(x) +
b(x)

β
‖f‖+ b(x) max{|α|, |γ|} ± b(x)u(x).

= ±f(x) +
b(x)

β
‖f‖+ b(x) max{|α|, |γ|}

≥ b(x) max{|α|, |γ|} ≥ 0, since
b(x)

β
‖f‖ ≥ f(x).

Applying the maximum principle in Lemma 2.1, it follows that ψ±(x) ≥ 0, for all x ∈ Ω.
Therefore,

|u(x)| ≤ 1

β
‖f‖+ max{|α|, |γ|}, for all x ∈ Ω.

giving that

|u(x)| ≤ C, for all x ∈ Ω.

Next, we prove for the case k = 1. Let x ∈ Ω and construct an associated neighbourhood
domain Nx = (p, p +

√
ε), such that x ∈ Nx and Nx ⊂ Ω. Then, by the mean value

theorem, we have u′(q) = u(p+
√
ε)−u(p)√
ε

for some q ∈ Nx,

|u′(q)| = |u(p+
√
ε)− u(p)|√
ε

≤ 1√
ε

[|u(p+
√
ε)|+ |u(p)|] ≤ 1√

ε
[||u||+ ||u||] ≤ 2√

ε
||u|| ≤ Cε−

1
2 .

But, we have
∫ x
p
u′′(z)dz = u′(x)− u′(p) solving for u′(x) gives

u′(x) = u′(p)−
∫ x

p

u′′(z)dz = u′(p) +
1

ε

∫ x

p

[b(z)u(z)− f(z)]dz.
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Hence,

|u′(x)| ≤ 2√
ε
‖u‖+

1

ε

∣∣∣∣ ∫ x

p

[b(z)u(z)− f(z)]dz

∣∣∣∣
|u′(x)| ≤ 2√

ε
‖u‖+

1

ε

∣∣b(ξ)u(ξ)− f(ξ)
∣∣ ∫ x

p

dz, ξ ∈ (p, x)

≤ 2√
ε
||u||+ 1

ε
(||b||||u||+ ||f ||)

√
ε = Cε−

1
2

Therefore,

|u′(x)| ≤ C(1 + ε−
1
2 (e−x

√
β
ε + e−(1−x)

√
β
ε )),

since (e−x
√
β
ε + e−(1−x)

√
β
ε ) is bounded. Substituting the bounds u(x), u′(x) in the differ-

ential equation, we obtain the bounds for |u(k)(x)| ≤ C(1 + ε−
k
2 (e−x

√
β
ε + e−(1−x)

√
β
ε )),

for = 2, 3, 4.

Lemma 2.3. The derivatives of the regular component solution satisfies the bound

(5.2)

∣∣∣∣dkv(x)

dxk

∣∣∣∣ ≤ C(1 + ε−
(k−2)

2 ), ∀x ∈ Ω̄, k = 0, 1, ..., 4.

and the derivatives of the singular components solution satisfies the bound∣∣∣∣dkwL(x)

dxk

∣∣∣∣ ≤ Cε−k2 e−x√ β
ε , ∀x ∈ Ω̄, k = 0, 1, ..., 4.∣∣∣∣dkwR(x)

dxk

∣∣∣∣ ≤ Cε−k2 e−(1−x)
√
β
ε , ∀x ∈ Ω̄, k = 0, 1, ..., 4.

(5.3)

Proof. In the proof of error estimates, sharper bounds on the solution and its derivatives
are required. To find these, the solution u is decomposed in to a regular component v and
a singular component w as follows.

u(x) = v(x) + w(x).

Here, v(x) = v0(x) + εv1(x), where v0(x) is the solution of the reduced problem, w(x) is
the solution of the homogeneous equation{

Lw(x) = 0,
w(0) = u0 − v0(0), w(1) = u1 − v0(1),

consequently, v1(x) satisfies {
Lv1(x) = v′′0 (x),
v1(0) = 0, v1 = 0.

Since,

v1(x) = ε−1(v(x)− v0(x)) = ε−1(u(x)− w(x)− v0(x))
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giving that

Lv1(x) = ε−1(Lu(x)− Lw(x)− Lv0(x))

= ε−1(Lu(x)− Lv0(x))

= ε−1(f(x)− Lv0(x))

= ε−1(f(x)− (−εv′′0 (x) + bv0(x)))

= ε−1(εv′′0 (x) + (f(x)− b(x)v0(x))) = v′′0 (x).

Hence,
Lv1(x) = v′′0 (x).

Since v1(x) = ε−1(u(x)− v0(x)− w(x)), we have on the boundary points

v1(0) = ε−1(u(0)− v0(0)− w(0))

= ε−1((u(0)− v0(0))− w(0)) = 0,

and

v1(1) = ε−1(u(1)− v0(1)− w(1))

= ε−1((u(1)− v0(1))− w(1)) = 0.

Thus, because of the bound on v′′0 (x), v1(x) is the solution of a problem similar to (2.1)-
(2.2). This implies that, for 0 ≤ k ≤ 4,

|v(k)1 (x)| ≤ C(1 + ε−
k
2 ).

Noting that, v = v0 + εv1, so that the regular component v satisfies,

|v(k)(x)| ≤ C(1 + ε−
(k−2)

2 ), for all x ∈ Ω.

Next, the singular component w of the solution is also bounded as shown below.
Decompose the singular component into left layer and right layer as

w(x) = wl(x) + wR(x)

where the boundary layer functions, wL and wR(x) are defined as the solution of the
problems {

LwL(x) = 0,
wL(0) = w(0), wL(1) = 0.

and

{
LwR(x) = 0,
wR(0) = 0, wR(1) = w(1)

Now, we define the barrier functions, ψ±(x) = Ce−x
√
β
ε ±wL(x), where the constant C is

chosen sufficiently large that the inequalities ψ±(0) ≥ 0 and ψ±(1) ≥ 0 holds. Thus,

Lεψ
±(x) = −ε(ψ±(x))′′ + b(x)ψ±(x)

= −ε[Cβ
ε
e−x

√
β
ε ± w′′L(x)] + b(x)[Ce−x

√
β
ε ± wL(x)]

= C(b(x)− β)e−x
√
β
ε ± (−εw′′L(x) + b(x)wL(x))

= C(b(x)− β)e−x
√
β
ε ≥ 0, since b(x) ≥ β.
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which gives ψ±(x) ≥ 0, x ∈ Ω̄, by the maximum principle it follows that

|wL(x)| ≤ Ce−x
√
β
ε , for all, x ∈ Ω̄.

Using similar procedure for the right boundary layer, we obtain

|wR(x)| ≤ Ce−(1−x)
√
β
ε , for all, x ∈ Ω̄,

which implies that the boundary layer solution is bounded. To bound the first derivative
w′L, we use the same technique as in the proof of Lemma 2.2.

For each x ∈ Nx = (y, y +
√
ε), such that |w′L(y)| ≤ 2ε−

1
2 ||wL||. Hence,

w′L(x) = w′L(y)−
∫ x

y

w′′L(z)dz = w′L(y)− ε−1

∫ x

y

b(z)wL(z)dz

|w′L(x)| ≤ ||w′L(y)||+ ε−1||bwL||
∫ x

y

dz

≤ 2ε−
1
2 ||wL||+ ε−

1
2 ||bwL|| ≤ Cε−

1
2 ||wL||.

But ||wL|| = supx∈Nx |wL(x)| ≤ Ce−y
√
β
ε , because wL(x) is monotonically decreasing.

||wL|| ≤ Ce−y
√
β
ε = Ce(x−y

√
β
ε e−x

√
β
ε

= Ce

√
ε√
ε

√
β
e−x

√
β
ε = Ce−x

√
β
ε , since x− y ≤

√
ε

Therefore,

|w′L(x)| ≤ Cε
−1
2 e−x

√
β
ε .

To obtain the bounds for higher derivatives, we simply differentiate it.


