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A SCHWARZ METHOD FOR FOURTH-ORDER SINGULARLY

PERTURBED REACTION-DIFFUSION PROBLEM WITH

DISCONTINUOUS SOURCE TERM

M. CHANDRU∗ AND V. SHANTHI

Abstract. A singularly perturbed reaction-diffusion fourth-order ordi-
nary differential equation(ODE) with discontinuous source term is con-

sidered. Due to the discontinuity, interior layers also exist. The consid-
ered problem is converted into a system of weakly coupled system of two
second-order ODEs, one without parameter and another with parameter ε

multiplying highest derivatives and suitable boundary conditions. In this
paper a computational method for solving this system is presented. A
zero-order asymptotic approximation expansion is applied in the second
equation. Then, the resulting equation is solved by the numerical method

which is constructed. This involves non-overlapping Schwarz method us-
ing Shishkin mesh. The computation shows quick convergence and results
presented numerically support the theoretical results.
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1. Introduction

Singular Perturbation Problems (SPPs) arises in several branches of engi-
neering and applied mathematics, including fluid flow at high Reynolds num-
bers, heat and mass transfer at high Péclet numbers, chemical reaction, control
theory, semi conductor devices, nuclear physics, etc. It is well-known fact that
the solution of these problems have multi-scale character. That is, there are
thin layers where the solution varies rapidly, while away from the layer(s) the
solutions behaves regularly and varies slowly. So, the numerical treatment of
SPPs gives major computational difficulties and in recent years a large number
of special purpose methods have been proposed to provide accurate numerical
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solutions. For more detailed discussion on the analytical and numerical treat-
ment of SPPs we may refer the reader to the books [1] - [5] and a very recent
literature survey [6]. Miller et al. [8] considered a parameter-uniform Schwarz
method for a singularly perturbed reaction-diffusion problem with an interior
layer. Kopteva et al. [9] discussed an overlapping Schwarz method for a singu-
larly perturbed semi-linear reaction-diffusion problem with multiple solutions.
They have used Bakhvalov and Shishkin type meshes to obtain second-order
convergence. Chandru and Shanthi applied a boundary value technique for sin-
gularly perturbed boundary value problem of reaction-diffusion type with dis-
continuous source term in [10]. The same type of problem evaluated using hybrid
difference scheme to obtain second-order convergence [11]. A fitted mesh method
for singularly perturbed Robin type boundary value problem with non-smooth
data discussed in [12]. Recently, Chandru et al. evaluated a two parameter
singularly perturbed problem with discontinuous source term using hybrid dif-
ference scheme [13]. But only in few papers, numerical methods for higher-order
differential equations with smooth and non-smooth cases are developed. Some
methods are available in the literature in order to obtain numerical solution
to singularly perturbed fourth-order differential equations when f is smooth on
Ω = (0, 1) [7], [14] - [17] and f is non-smooth on Ω [18]. Motivated by the works
of [8, 18], a fourth-order singularly perturbed reaction-diffusion boundary value
problem with discontinuous source term is considered:

− εyiv(x) + b(x)y′′(x)− c(x)y(x) = −f(x), x ∈ Ω− ∪ Ω+, (1)

y(0) = p, y(1) = q, y′′(0) = −r, y′′(1) = −s, (2)

where 0 < ε << 1 is a singular perturbation parameter. Define Ω− = (0, d), Ω+ =
(d, 1), d ∈ Ω, to indicate the jump at d in any function [w](d) = w(d+)−w(d−),
b(x) on (Ω− ∪ Ω+) and c(x) on Ω = [0, 1] such that

b(x) ≥ β > 0, for some positive constant β, (3)

0 ≥ c(x) ≥ −γ, γ > 0, (4)

β − θγ ≥ η > 0, for some θ arbitrarily close to 2. (5)

Further it is assumed that f is sufficiently smooth on Ω \ {d}; a single discon-
tinuity in the source term f(x) occurs at a point d ∈ Ω; f(x) and its derivatives
have jump discontinuity at the same point. In general this discontinuity gives
rise to interior layers in the second derivative of the exact solution of the prob-
lem. As f is discontinuous at d the solution y of (1)-(2) does not necessarily
have a continuous fourth derivative at the point d. Thus y ̸∈ C4(Ω). However,
the third derivative of the solution exists and is continuous.

This paper is organized as follows. Section 2 presents analytic behavior of
the solution of the system of SPP (1)-(5). Some analytical and numerical results
for second-order singularly perturbed boundary value problem with discontinu-
ous source terms are described in Section 3.1, numerical scheme in Section 3.2



A Schwarz method for fourth-order singularly perturbed reaction-diffusion problem 497

and truncation error analysis estimated in Section 3.3. The computational tech-
nique for the considered problem is discussed in Section 4. Section 5 explains
the error estimates for the numerical solution. Numerical example is solved in
Section 6. The paper ends with a conclusion. Throughout this paper, C denotes
a generic positive constant that is independent of nodal point (i), number of
mesh point (N) and the singular perturbation parameter ε. We use the norm
∥w∥ = supx∈Ω |w(x)|. Further |y(x)| means (|y1(x)|, |y2(x)|)T .

2. Some analytical results

In this section we derive a maximum principle for the following problem. Then
using this principle, a stability result for the same problem is derived. Further,
an asymptotic expansion approximation is constructed for the solution. Using
the transformation y = y1 and y′′1 = −y2, the SPBVP (1)-(2) can be transformed
into an equivalent problem of the form{

P1y(x) = −y′′1 (x)− y2(x) = 0, x ∈ Ω

P2y(x) = −εy′′2 (x) + b(x)y2(x) + c(x)y1(x) = f(x), x ∈ (Ω− ∪ Ω+),
(6)

{
y1(0) = p, y1(1) = q,

y2(0) = r, y2(1) = s,
(7)

where y = (y1, y2)
T , y1 ∈ C2(Ω)∩C3(Ω)∩C4(Ω− ∪Ω+), y2 ∈ C0(Ω)∩C1(Ω)∩

C2(Ω− ∪ Ω+) [18]. The proof of the Theorem 1-3 are obtained by following the
steps defined in [18].

Theorem 1. The BVP (1)-(2) has a solution y ∈ C2(Ω)∩C3(Ω)∩C4(Ω−∪Ω+).

Theorem 2 (Maximum principle). Suppose that y = (y1, y2)
T , y1 ∈ C2(Ω) ∩

C3(Ω) ∩ C4(Ω− ∪ Ω+), y2 ∈ C0(Ω) ∩ C1(Ω) ∩ C2(Ω− ∪ Ω+), satisfies y(0) ≥
0, y(1) ≥ 0 and P1y(x) ≥ 0, ∀ x ∈ Ω, P2y(x) ≥ 0, ∀ x ∈ Ω− ∪ Ω+ and
[y2]

′(d) ≤ 0. Then y(x) ≥ 0, ∀ x ∈ Ω.

Theorem 3 (Stability result). Consider the BVPs (6)-(7) subject to conditions
(3)-(5). If y1 ∈ C2(Ω)∩C3(Ω)∩C4(Ω−∪Ω+), y2 ∈ C0(Ω)∩C1(Ω)∩C2(Ω−∪Ω+),
then

|yi(x)|Ω ≤ Cmax{|y1(0)|, |y1(1)|, |y2(0)|, |y2(1)|, ∥P1y∥Ω, ∥P2y∥Ω−∪Ω+}, i = 1, 2.

2.1. Some asymptotic expansion approximation. Consider the BVP (6)-
(7). Using the perturbation method defined in [2, 15], we can construct an
asymptotic expansion for the solution of the BVP (6)-(7) as follows. Let ul0 =
(ul01, ul02), and ur0 = (ur01, ur02) be the solutions of the reduced problem (6)-
(7). {

−u′′
l01(x)− ul02(x) = 0,

b(x)ul02(x) + c(x)ul01(x) = f(x), x ∈ Ω−,
(8)
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−u′′

r01(x)− ur02(x) = 0,

b(x)ur02(x) + c(x)ur01(x) = f(x), x ∈ Ω+,
(9)

subject to the conditions

ul01(0) = p, ul01(d−) = ur01(d+), (10)

u′
l01(d−) = u′

r01(d+), ur01(1) = q (11)

and vl0 = (vl01, vl02), vr0 = (vr01, vr02) are layer correction terms given by

v′′l01(x) = −vl02, vl02 = k1e
−x

√
b(0)/ε,

v′′r01(x) = −vr02, vr02 = k2e
−(x−d)

√
b(d)/ε,

Here,

k1 = [y2(0)− ul02(0)]− k2e
−d

√
b(d)/ε,

k2 =
k21

{√
b(d) +

√
b(1)e−(1−d)

√
(b(d)+b(1))/ε

}
k24 + k25

+
(k22 + k23)

{
1− e−(1−d)

√
(b(d)+b(0))/ε

}
k24 + k25

,

k21 =
{
[y2(1)− ur02(1)]e

−(1−d)
√

b(1)/ε − [y2(0)− ul02(0)]e
−d

√
b(0)/ε

}
+ [ur02(d+)− ul02(d−)],

k22 =
√
b(1)[y2(1)− ur02(1)]e

−(1−d)
√

b(1)/ε +
√

b(0)[y2(0)− ul02(0)]

e−d
√

b(0)/ε,

k23 =
√
ε[u′

r02(d+)− u′
l02(d−)],

k24 =
(
1− e−d

√
(b(0)+b(d))/ε

)(√
b(d) +

√
b(1)e−(1−d)

√
(b(d)+b(1))/ε

)
,

k25 =
(
1− e−(1−d)

√
(b(d)+b(1))/ε

)(√
b(d) +

√
b(0)e−d

√
(b(0)+b(d))/ε

)
.

Now let wl0 = (wl01, wl02), wr0 = (wr01, wr02) be the right-layer corrections
given by

w′′
l01 = −wl02, wl02 = k3e

−(d−x)
√

b(d)/ε,

w′′
r01 = −wr02, wr02 = k4e

−(1−x)
√

b(1)/ε,

where

k3 =
k31 − k32

k33
,

k31 = [y2(0)− ul02(0)]e
−d

√
b(0)/ε + k2

(
1− e−d

√
(b(0)+b(d))/ε

)
,
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k32 = [y2(1)− ur02(1)]e
−(1−d)

√
b(1)/ε + [ur02(d+)− ul02(d−)],

k33 =
(
1− e−(1−d)

√
(b(d)+b(1))/ε

)
,

k4 = [y2(1)− ur02(1)]− k3e
−(1−d)

√
b(d)/ε.

The values of k1, k2, k3, k4 are determined by imposing the following boundary
and continuity conditions:

y2,as(0) = y2(0), y2,as(1) = y2(1),

y2,as(d−) = y2,as(d+), y′2,as(d−) = y′2,as(d+).

Let

yas = (y1,as, y2,as), where

{
y1,as = u01 + v01 + w01,

y2,as = u02 + v02 + w02,
∀ x ∈ Ω,

where u01 ∈ C2(Ω),

u01 =


ul01(x), x ∈ Ω−,

ul01(d−) = ur01(d+), x = d

ur01(x), x ∈ Ω+,

u02 =


ul02(x), x ∈ Ω−,

ul02(d−) = ur02(d+), x = d

ur02(x), x ∈ Ω+,

v01 =


vl01(x), x ∈ Ω−,

vl01(d−) = vr01(d+), x = d

vr01(x), x ∈ Ω+,

w01 =


wl01(x), x ∈ Ω−,

wl01(d−) = wr01(d+), x = d

wr01(x), x ∈ Ω+.

Remark 1. If (ul01, ur02) are the solution of (8)-(11), then u01 is the solution
of the BVP

−u′′
01 + [c(x)/b(x)]u01(x) = f(x)/b(x), ∀ x ∈ Ω− ∪ Ω+ (12)

u01(0) = p, u01(1) = q, u01(d−) = u01(d+), u′
01(d−) = u′

01(d+). (13)

In the following it is assumed that BVP (12)-(13) can be solved exactly and
closed form solution is available. This problem has a unique solution u01 ∈
C0(Ω) ∩ C1(Ω) ∩ C2(Ω− ∪ Ω+) [18].

Theorem 4. The zero-order asymptotic expansion approximation yas of the
solution y(x) of (6)-(7) satisfies the inequality

|yi(x)− yi,as(x)| ≤ C
√
ε, x ∈ Ω, i = 1, 2,

where y1,as ∈ C2(Ω)∩C3(Ω)∩C4(Ω−∪Ω+), y2,as ∈ C0(Ω)∩C1(Ω)∩C2(Ω−∪Ω+).

Proof. It is easy to verify that y1,as ∈ C2(Ω) ∩ C3(Ω) ∩ C4(Ω− ∪ Ω+) and

y2,as ∈ C0(Ω)∩C1(Ω)∩C2(Ω−∪Ω+). Defining barrier functions ϕ
±
=

(
ϕ±
1 , ϕ

±
2

)
as

ϕ±
1 = C(1 + δ)

(
1− x2

2

)√
ε± (y1 − u01) (x)

ϕ±
2 = C

√
ε± (y2 − y2,as) (x),
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it is easy to verify that

P1ϕ
± ≥ 0, P2ϕ

± ≥ 0, ∀ x ∈ (Ω− ∪ Ω+),

and

ϕ±
1 (0) ≥ 0, ϕ±

1 (1) ≥ 0, ϕ±
2 (0) ≥ 0, ϕ±

2 (1) ≥ 0, [ϕ±
2 ]

′(d) = 0

for a suitable selection of C. Then, by Theorem 2 we have the required result. �

3. Some analytical and numerical results for SPBVP for
second-order ODEs with discontinuous source terms

We state some results for the following SPBVP which are needed in the rest
of the paper. Consider the SPBVP

Ly∗2(x) = −εy∗
′′

2 (x) + b(x)y∗2(x) = f(x)− c(x)u01(x), x ∈ (Ω− ∪ Ω+), (14)

y∗2(0) = r, y∗2(1) = s, (15)

Remark 2. The BVP (14)-(15) has a unique solution y∗2 ∈ C0(Ω) ∩ C1(Ω) ∩
C2(Ω− ∪ Ω+) [19].

3.1. Analytical results.

Theorem 5. If (y1, y2) and y∗2 are solutions of the BVPs (6)-(7) and (14)-(15),
respectively, then

|(y2 − y∗2)(x)| ≤ C
√
ε, x ∈ Ω.

Proof. Since (y1, y2) are the solution of (6)-(7), then y2 satisfies the BVP

−εy′′2 (x) + b(x)y2(x) = f(x)− c(x)y1(x), x ∈ (Ω− ∪ Ω+),

y2(0) = r, y2(1) = s.

Further, the function w = y2 − y∗2 satisfies the BVP

−εw′′(x) + b(x)w(x) = f(x)− c(x)[y1(x)− u01(x)], x ∈ (Ω− ∪ Ω+),

w(0) = 0, w(1) = 0, [w]′(d) = 0.

From Theorem 4 and the definition of v01 and w01, we have

|(y1 − u01)(x)| ≤ |y1(x)− (u01 + v01 + w01)(x)|+ |(v01 + w01)(x)|
≤ C

√
ε+ Cε,

that is,

|(y1 − u01)(x)| ≤ C
√
ε.

From this inequality and the stability result given in [19] we have

|w(x)| ≤ C
√
ε

that is,

|(y2 − y∗2)(x)| ≤ C
√
ε.

�
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The proof of the Theorem 6-7 are obtained by following the steps defined in
[5].

Theorem 6. Let y∗2(x) be the solution of (L) and y
∗[k]
2 (x) be the corresponding

sequences of Schwarz iterates. Then, for all k ≥ 1

∥y∗[k]2 − y∗2∥Ω ≤ Cqk

where C is independent of k and ε and

q = e−α(ξ+−ξ−)/ε < 1

The solution y∗2(x) of (L) is decomposed as

y∗2(x) = u02(x) + v02(x) + w02(x)

where u02(x) is the smooth component and v02(x) and w02(x) are the singular
components. Each of the Schwarz iterates is also decomposed in an analogous
manner. Thus, for k ≥ 1,

y
∗[k]
2 (x) = u

[k]
02 + v

[k]
02 + w

[k]
02

Theorem 7. Let u02 be the smooth component and v02, w02 are singular com-

ponents of y∗2(x), and let u
[k]
02 and v

[k]
02 , w

[k]
02 be the corresponding sequences of

Schwarz iterates. Then, for all k ≥ 1 and for all x ∈ Ω,

∥u[k]
02 − u02∥Ω ≤ Cqk,

∥v[k]02 − v02∥Ω ≤ Cqk and ∥w[k]
02 − w02∥Ω ≤ Cqk

where C is independent of k and ε and

q = e−α(ξ+−ξ−)/ε < 1.

3.2. Numerical scheme. A non-overlapping Schwarz iterative process for the
BVP (14)-(15) is now described. On (Ω− ∪ Ω+) a piecewise uniform mesh of
N mesh interval is constructed as follows. The interval Ω−; is subdivided into
the three subintervals [0, τ1), [τ1, d− τ1) and [d− τ1, d) for some τ1 that satisfies
0 < τ1 ≤ d/4. On [0, τ1) and [d− τ1, d) a uniform mesh with N/8 mesh intervals
is placed, while [τ1, d − τ1) has a uniform mesh with N/4 mesh intervals. The
subinterval [d, d+τ2), [d+τ2, 1−τ2) and [1−τ2, 1] of Ω

+ are treated analogously
for some τ2 satisfying 0 < τ2 ≤ (1 − d)/4. The interior points of the mesh are
denoted by

ΩN
ε =

{
xi : 1 ≤ i ≤ N

2
− 1

}
∪
{
xi :

N

2
+ 1 ≤ i ≤ N − 1

}
.

Clearly xN/2 = d and Ω
N

ε = {xi}N0 . Note that this mesh is a uniform mesh when
τ1 = d/4 and τ2 = (1 − d)/4. It is fitted to the BVP (14)-(15) by choosing τ1
and τ2 to be the following functions of N and ε.

τ1 =

{
d

4
, 2

√
ε

β
lnN

}
and τ2 =

{
1− d

4
, 2

√
ε

β
lnN

}
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The discretization of (14)-(15) and the procedure for the non-overlapping Schwarz
iterative technique is described below

y
∗[0]
2,i (x) = 0, x ∈ (0, d) ∪ (d, 1), (16)

y
∗[0]
2,i (0) = r, y

∗[0]
2,i (d) = y∗2(d), y

∗[0]
2,i (1) = s. (17)

Here the proper choice of an initial guess y
∗[0]
2,i (d) for the unknown y∗2(d). Then,

we solve the following two finite difference subproblems for the mesh functions

y
∗[k]
2,il

, y
∗[k]
2,ir

, k ≥ 1:

LNy
∗[k]
2,il

= −εδ2y
∗[k]
2,il

+ b(xi)y
∗[k]
2,il

+ c(xi)u01,i = f(xi), 1 < i < N/2, (18)

y
∗[k]
2,il

(0) = y
∗[k−1]
2,il

(0), y
∗[k]
2,il

(d) = y
∗[k−1]
2,il

(d), (19)

LNy
∗[k]
2,ir

= −εδ2y
∗[k]
2,ir

+ b(xi)y
∗[k]
2,ir

+ c(xi)u01,i = f(xi), 1 < i < N/2, (20)

y
∗[k]
2,ir

(0) = y
∗[k−1]
2,ir

(d), y
∗[k]
2,ir

(1) = y
∗[k−1]
2,ir

(1). (21)

where,

δ2Zi =
D+Zi −D−Zi

(xi+1 − xi−1)/2
, D+Zi =

Zi+1 − Zi

xi+1 − xi
and D−Zi =

Zi − Zi−1

xi − xi−1
.

After these two sub-problems are solved, the approximation to y∗2(d) is updated
using the average of the computed values at the two neighboring nodes of d.
That is,

y
∗[k]
2,i (d) =

y
∗[k−1]
2,il

(x(N/2)−1) + y
∗[k−1]
2,ir

(x(N/2)+1)

2
. (22)

We define the kth approximation to y∗2 as

y
∗[k]
2,i =


y
∗[k]
2,il

, x < d
y
∗[k−1]
2,il

(x(N/2)−1)+y
∗[k−1]
2,ir

(x(N/2)+1)

2 , x = d,

y
∗[k]
2,ir

, x > d,

(23)

where y
∗[k]
2,il

and y
∗[k]
2,ir

are the continuous linear interpolant of y
∗[k]
2,i on Ω− and Ω+

respectively. The corresponding mesh functions are defined in the earlier stage
of this section.

Each of the iterates y
∗[k]
2,i is decomposed into a smooth component u

∗[k]
2,i and

singular components v
∗[k]
2,i , w

∗[k]
2,i . Thus

y
∗[k]
2,i = u

∗[k]
2,i + v

∗[k]
2,i + w

∗[k]
2,i

where u
∗[k]
2,i , v

∗[k]
2,i and w

∗[k]
2,i are defined, for all k ≥ 1,

u
∗[k]
2,i =

{
u
∗[k]
2,il

, for x ∈ Ω−

u
∗[k]
2,ir

, for x ∈ Ω+
and v

∗[k]
2,i =

{
v
∗[k]
2,il

, for x ∈ Ω−

v
∗[k]
2,ir

, for x ∈ Ω+
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w
∗[k]
2,i =

{
w

∗[k]
2,il

, for x ∈ Ω−

w
∗[k]
2,ir

, for x ∈ Ω+

3.3. Error analysis. The error at each mesh point xi ∈ Ω
N

ε is denoted by

|(y∗[k]2 − y
∗[k]
2,i )(x)|.

Theorem 8. Let u
[k]
02 and u

∗[k]
2,i denote the smooth components of y

∗[k]
2 and y

∗[k]
2,i

respectively. Then, for all k ≥ 1 and xi ∈ Ω

∥(u∗[k]
2,i − u

[k]
02 )(xi)∥ ≤ CN−1

Proof. Using the result in [5](Lemma 1 pg.21),

| − ε

(
d2

dx2
− δ

)
u
[k]
02 (xi)| ≤

1

3
(xi+1 − xi−1)|u[k]

02 |3 for xi ∈ Ω−

and

|LN (u
∗[k]
2,il

− u
[k]
02 )(xi)| ≤ C

√
ε ≤ CN−1 for xi ∈ Ω−.

Similarly for xi ∈ Ω+

|LN (u
∗[k]
2,ir

− u
[k]
02 )(xi)| ≤ CN−1 for xi ∈ Ω+.

Then it leads to the required estimate

|(u∗[k]
2,i − u

[k]
02 )(xi)| ≤ CN−1 for xi ∈ Ω.

�

Theorem 9. Let v
[k]
02 , w

[k]
02 and v

∗[k]
2,i , w

∗[k]
2,i denote the singular components of

y
[k]
2 and y

∗[k]
2,i respectively. Then, for all k ≥ 1

∥(v∗[k]2,i − v
[k]
02 )(xi)∥ ≤ CN−1 lnN, for xi ∈ Ω−

∥(w∗[k]
2,i − w

[k]
02 )(xi)∥ ≤ CN−1 lnN, for xi ∈ Ω+

Proof. The argument lying on (0, τ1) and (d − τ1, d), the local truncation error
of the singular part of the solution is estimated as follows∣∣∣∣−ε

(
d2

dx2
− δ2

)
v
[k]
2 (xi)

∣∣∣∣ ≤ ε(xi+1 − xi−1)|v[k]2 (xi)|3 (24)

and for (τ1, d− τ1)∣∣∣∣−ε

(
d2

dx2
− δ2

)
v
[k]
2 (xi)

∣∣∣∣ ≤ 2ε max
xi ∈ [xi+1,xi−1]

|v[k]2 (xi)| (25)

Using (24) outside the layers and at xi = τ1, xi = d− τ1 on Ω− gives∣∣∣∣−ε

(
d2

dx2
− δ2

)
v
[k]
2 (xi)

∣∣∣∣ ≤ 2εCε−1 max
xi ∈ [xi+1,xi−1]

e−
√
βxi/

√
ε ≤ CN−1
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Using (25) outside the layers and at xi = τ1, xi = d− τ1 on Ω− gives∣∣∣∣−ε

(
d2

dx2
− δ2

)
v
[k]
2 (xi)

∣∣∣∣ ≤ Cε2
8τ1
N

ε
−
3

2 e1(xi) ≤ Cτ1ε
−
1

2N−1 ≤ CN−1 lnN.

Hence ∣∣∣∣−ε

(
d2

dx2
− δ2

)
v
[k]
2 (xi)

∣∣∣∣ ≤ CN−1 lnN, for xi ∈ Ω−

Then it leads to the required estimate

|v∗[k]2,i − v
[k]
02 (xi)| ≤ CN−1 lnN, for xi ∈ Ω−.

Similarly, the local truncation error of the singular component lying on (d +
τ2) and (1− τ2, 1) is

|w∗[k]
2,i − w

[k]
02 (xi)| ≤ CN−1 lnN, for xi ∈ Ω+.

�
At the point xi = d.

|LN (y
∗[k]
2,i − y

∗[k]
2 )(d)|

= y
∗[k]
2,i +

ε

h2

∫ d+h

t=d

∫ t

s=d

y
∗[k]′′
2 (s)dsdt

− ε

h2

∫ d

t=d−h

∫ t

s=d

y
∗[k]′′
2 (s)dsdt− a(d)y

∗[k]′′
2 (d)

=
1

h2

∫ d+h

t=d

∫ t

s=d

∫ d+h

r=s

(f − ay
∗[k]
2 )′(r)drdsdt

+
1

h2

∫ d

t=d−h

∫ t

s=d

∫ s

r=d−h

(f − ay
∗[k]
2 )′(r)drdsdt

− a(d)y
∗[k]′′
2 (d) +

1

2
a(d− h)y

∗[k]
2 (d− h) +

1

2
a(d+ h)y

∗[k]
2 (d+ h)

=
1

2

∫ d+h

t=d

∫ t

s=d

∫ d+h

r=s

(f − ay
∗[k]
2 )′(r)drdsdt

+
1

h2

∫ d

t=d−h

∫ t

s=d

∫ s

r=d−h

(f − ay
∗[k]
2 )′(r)drdsdt

+
1

2

∫ d−h

t=d

[
a(t)y

∗[k]
2 (t)

]′
dt+

1

2

∫ d+h

t=d

[
a(t)y

∗[k]
2 (t)

]′
dt

|LN (y
∗[k]
2,i − y

∗[k]
2 )(d)| ≤ CN−1 lnN. (26)

Theorem 10. The error in using the scheme (18)-(21) to solve the BVP problem
(14)-(15) at the inner grid points {xi, i = 1, 2, ..., N − 1} satisfies

|(y∗[k]2 − y
∗[k]
2,i )(x)| ≤ CN−1 lnN for x ∈ Ω

N

ε .

Proof. From Theorem 8, 9 and (26) the above result can be obtained. �
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4. Computational method

Consider the BVP (6)-(7). Let u01(x) be the reduced problem solution of
the BVP (12)-(13) . From the Theorem 5 we get |y1(x) − u01(x)| ≤ C

√
ε. The

first step in the computational method is to replace y1 by u01 in the second
equation of the system (6)(as we have said earlier it is assumed that the closed
from solution is available). Hence the system (6) gets decoupled. In the second
step, we find the numerical approximation solution for y2 by applying the scheme
(18)-(21). Then find y1 of (6) by using current y2 in the similar manner. This
iterative process is repeated until successive iterates are sufficiently close at each

point of Ω
N

ε , in the sense that they satisfy the converging criterion

max
0<i<N

|(y∗[k]2,i − y
∗[k−1]
2,i )(xi)| < 10−10.

5. Error estimate

Theorem 11. Let (y1, y2) be the solution of (6)-(7). Further, let y
∗[k]
2,i be its

numerical solution (14)-(15) obtained by numerical scheme. Then

|y[k]2 (xi)− y
∗[k]
2,i (xi)| ≤ C[N−1 lnN +

√
ε].

Proof. Using Theorem 5 and 10 and the triangle inequality, we conclude that,

|y[k]2 (xi)− y
∗[k]
2,i (xi)| ≤ |y[k]2 (xi)− y

∗[k]
2 (xi)|+ |y∗[k]2 (xi)− y

∗[k]
2,i |

≤ CN−1 lnN + C
√
ε

|y[k]2 (xi)− y
∗[k]
2,i (xi)| ≤ C[N−1 lnN +

√
ε].

�

Remark 3. There are two boundary layers (x = 0 and x = 1) and an interior
layer at x = d. If the boundary conditions happen to have values such that no
boundary layer occurs at a boundary point and do the necessary modifications
in the distribution of the mesh points[8].

Remark 4. So far, it has been assumed that the exact solution u01 of the BVP
(12)-(13) is available. If not, one has to obtain a numerical solution for u01 by
a suitable finite difference method with a piecewise uniform mesh of N mesh
interval described in Section 3.2. As done earlier, in the second equation the
values of y1 at the above grid points will be taken as u01,i, then the resulting
equations are solved for y2,i.

6. Numerical results

In this section an example is solved for the particular problem of the type
(1)-(2).
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Example 1.

b(x) =

{
2x+ 1, x ≤ 0.5,

2(1− x) + 1, x > 0.5,
, c(x) = 1.0, f(x) =

{
−0.5, x ≤ 0.5,

0.5, x > 0.5,

and y(0) = 1.0, y(1) = 1.0, y′′(0) = y′′(1) = f(0).

which validate the theoretical results established in the previous result. The
maximum pointwise errors and number of iterations are evaluated using the
double mesh principle.

DN
ε = max

xi∈Ω
N
ε

| (Y N − Y 2N )(xi) | and DN = max
ε

DN
ε

where Y N (xi) and Y 2N (xi) denote the numerical solutions obtained using N
and 2N mesh intervals. In addition, the order of convergence is calculated from

ρN = log2

(
DN

D2N

)
The solution is presented for various values of N and ε in Table 1.

7. Conclusion

A fourth-order singularly perturbed two point boundary value problem for
ODEs with discontinuous source term is considered. The suitable boundary
conditions are used to reduce the fourth-order differential equation into a system
of two second-order equations and also established maximum principle, stability
result and other necessary estimates. An iterative numerical method is used to
solve the given example and numerical result is in agreement with the theoretical
results.
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