• 제목/요약/키워드: Single silicon TFT

검색결과 19건 처리시간 0.032초

채널에 단일 그레인 경계를 갖는 다결정 실리콘박막 트랜지스터 (An Excimer Laser Annealed Poly-Si Thin Film Transistor Designed for Reduction of Grainboundary Effect)

  • 전재홍
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권12호
    • /
    • pp.559-561
    • /
    • 2003
  • We report a new excimer laser annealing method which successfully results in a single grain boundary formation in the channel of polycrystalline silicon thin film transistor. The proposed method is based on lateral grain growth and employs aluminum patterns which act as selective beam mask and lateral heat sink. The maximum grain size obtained by the proposed method is about 1.6${\mu}{\textrm}{m}$ in the length. The grainboundaries should be arranged parallel with the direction of current flow for the best device performance, so we propose a new device fabrication method and a new poly-Si TFT structure. Poly-Si TFT fabricated by the proposed method exhibits considerably improved electrical characteristics, such as high field effect mobility exceeding 240 $cm^2$/Vsec.

Transferrable single-crystal silicon nanomembranes and their application to flexible microwave systems

  • Seo, Jung-Hun;Yuan, Hao-Chih;Sun, Lei;Zhou, Weidong;Ma, Zhenqiang
    • Journal of Information Display
    • /
    • 제12권2호
    • /
    • pp.109-113
    • /
    • 2011
  • This paper summarizes the recent fabrication and characterizations of flexible high-speed radio frequency (RF) transistors, PIN-diode single-pole single-throw switches, as well as flexible inductors and capacitors, based on single-crystalline Si nanomembranes transferred on polyethylene terephthalate substrates. Flexible thin-film transistors (TFTs) on plastic substrates have reached RF operation speed with a record cut-off/maximum oscillation frequency ($f_T/f_{max}$) values of 3.8/12 GHz. PIN diode switches exhibit excellent ON/OFF behaviors at high RF frequencies. Flexible inductors and capacitors compatible with high-speed TFT fabrication show resonance frequencies ($f_{res}$) up to 9.1 and 13.5 GHz, respectively. Robust mechanical characteristics were also demonstrated with these high-frequency passives components.

Stepwise Ni-silicide Process for Parasitic Resistance Reduction for Silicon/metal Contact Junction

  • Choi, Hoon;Cho, Il-Whan;Hong, Sang-Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권4호
    • /
    • pp.137-142
    • /
    • 2008
  • The parasitic resistance is studied to silicon/metal contact junction for improving device performance and to lower contact/serial resistance silicide in natural sequence. In this paper constructs the stepwise Ni silicide process for parasitic resistance reduction for silicon/metal contact junction. We have investigated multi-step Ni silicide on SiGe substrate with stepwise annealing method as an alternative to compose more thermally reliable Ni silicide layer. Stepwise annealing for silicide formation is exposed to heating environment with $5^{\circ}C/sec$ for 10 seconds and a dwelling for both 10 and 30 seconds, and ramping-up and the dwelling was repeated until the final annealing temperature of $700\;^{\circ}C$ is achieved. Finally a direct comparison for single step and stepwise annealing process is obtained for 20 nm nickel silicide through stepwise annealing is $5.64\;{\Omega}/square$ at $600\;^{\circ}C$, and it is 42 % lower than that of as nickel sputtered. The proposed stepwise annealing for Ni silicidation can provide the least amount of NiSi at the interface of nickel silicide and silicon, and it provides lower resistance, higher thermal-stability, and superior morphology than other thermal treatment.

Mg0.1Zn0.9O/ZnO 활성층 구조의 박막트랜지스터 연구 (A Study of Thin-Film Transistor with Mg0.1Zn0.9O/ZnO Active Structure)

  • 이종훈;김홍승;장낙원;윤영
    • 한국전기전자재료학회논문지
    • /
    • 제27권7호
    • /
    • pp.472-476
    • /
    • 2014
  • We report the characteristics of thin-film transistor (TFT) to make the bi-channel structure with stacked $Mg_{0.1}Zn_{0.9}O$ (Mg= 10 at.%) and ZnO. The ZnO and $Mg_{0.1}ZnO_{0.9}O$ thin films were deposited by radio frequency (RF) co-sputter system onto the thermally oxidized silicon substrate. A total thickness of active layer was 50 nm. Firstly, the ZnO thin films were deposited to control the thickness from 5 nm to 30 nm. Sequentially, the $Mg_{0.1}ZnO_{0.9}O$ thin films were deposited to change from 45 nm to 20 nm. The bi-layer TFT shows more improved properties than the single layer TFT. The field effect mobility and subthreshold slope for $Mg_{0.1}ZnO_{0.9}O$/ZnO-TFT are $7.40cm^2V^{-1}s^{-1}$ and 0.24 V/decade at the ZnO thickness of 10 nm, respectively.

LTPS produced by JIC (Joule-heating Induced Crystallization) for AMOLED TFT backplanes

  • Hong, Won-Eui;Lee, Seog-Young;Chung, Jang-Kyun;Lee, Joo-Yeol;Ro, Jae-Sang;Kim, Dong-Hyun;Park, Seung-Ho;Kim, Cheol-Su;Lee, Won-Pil;Kim, Hye-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.378-381
    • /
    • 2009
  • As a Joule-heat source, a conductive Mo layer was used to crystallize amorphous silicon for AMOLED backplanes. This Joule-heating induced crystallization (JIC) process could produce poly-Si having a grain size ranging from tens of nanometers to greater than several micrometers. Here, the blanket (single-shot whole-plane) crystallization could be achieved on the $2^{nd}$ and the $4^{th}$ generation glass substrate.

  • PDF

나노급 수소화된 비정질 실리콘층 두께에 따른 저온형성 니켈실리사이드의 물성 연구 (Property of Nickel Silicides with Hydrogenated Amorphous Silicon Thickness Prepared by Low Temperature Process)

  • 김종률;최용윤;박종성;송오성
    • 대한금속재료학회지
    • /
    • 제46권11호
    • /
    • pp.762-769
    • /
    • 2008
  • Hydrogenated amorphous silicon(a-Si : H) layers, 120 nm and 50 nm in thickness, were deposited on 200 $nm-SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by E-beam evaporation. Finally, 30 nm-Ni/120 nm a-Si : H/200 $nm-SiO_2$/single-Si and 30 nm-Ni/50 nm a-Si:H/200 $nm-SiO_2$/single-Si were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 30 minute. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide on the 120 nm a-Si:H substrate showed high sheet resistance($470{\Omega}/{\Box}$) at T(temperature) < $450^{\circ}C$ and low sheet resistance ($70{\Omega}/{\Box}$) at T > $450^{\circ}C$. The high and low resistive regions contained ${\zeta}-Ni_2Si$ and NiSi, respectively. In case of microstructure showed mixed phase of nickel silicide and a-Si:H on the residual a-Si:H layer at T < $450^{\circ}C$ but no mixed phase and a residual a-Si:H layer at T > $450^{\circ}C$. The surface roughness matched the phase transformation according to the silicidation temperature. The nickel silicide on the 50 nm a-Si:H substrate had high sheet resistance(${\sim}1k{\Omega}/{\Box}$) at T < $400^{\circ}C$ and low sheet resistance ($100{\Omega}/{\Box}$) at T > $400^{\circ}C$. This was attributed to the formation of ${\delta}-Ni_2Si$ at T > $400^{\circ}C$ regardless of the siliciation temperature. An examination of the microstructure showed a region of nickel silicide at T < $400^{\circ}C$ that consisted of a mixed phase of nickel silicide and a-Si:H without a residual a-Si:H layer. The region at T > $400^{\circ}C$ showed crystalline nickel silicide without a mixed phase. The surface roughness remained constant regardless of the silicidation temperature. Our results suggest that a 50 nm a-Si:H nickel silicide layer is advantageous of the active layer of a thin film transistor(TFT) when applying a nano-thick layer with a constant sheet resistance, surface roughness, and ${\delta}-Ni_2Si$ temperatures > $400^{\circ}C$.

SG-TFET와 DG-TFET의 구조에 따른 성능 비교 (Performance Comparison of the SG-TFET and DG-TFET)

  • 장호영;안태준;유윤섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.445-447
    • /
    • 2016
  • 터널링 전계효과 트랜지스터(Tunneling Field-Effect Transistor; TFET) 중에 이중 게이트 TFT(DG-TFET)와 단일 게이트 TFET(SG-TFET)의 구조에 따른 성능 비교를 조사했다. 채널 길이가 30nm 이상, 실리콘 두께 20nm이하, 게이트 절연막 두께는 작아질수록 SG-TFET와 DG-TFET subthrreshold swing과 온 전류 성능이 향상됨을 보였다. 다양한 파라미터에서 DG-TFET의 성능이 SG-TFET 성능보다 향상됨을 보인다.

  • PDF

Effects of Simultaneous Bending and Heating on Characteristics of Flexible Organic Thin Film Transistors

  • Cho, S.W.;Kim, D.I.;Lee, N.E.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.470-470
    • /
    • 2013
  • Recently, active materials such as amorphous silicon (a-Si), poly crystalline silicon (poly-Si), transition metal oxide semiconductors (TMO), and organic semiconductors have been demonstrated for flexible electronics. In order to apply flexible devices on the polymer substrates, all layers should require the characteristic of flexibility as well as the low temperature process. Especially, pentacene thin film transistors (TFTs) have been investigated for probable use in low-cost, large-area, flexible electronic applications such as radio frequency identification (RFID) tags, smart cards, display backplane driver circuits, and sensors. Since pentacene TFTs were studied, their electrical characteristics with varying single variable such as strain, humidity, and temperature have been reported by various groups, which must preferentially be performed in the flexible electronics. For example, the channel mobility of pentacene organic TFTs mainly led to change in device performance under mechanical deformation. While some electrical characteristics like carrier mobility and concentration of organic TFTs were significantly changed at the different temperature. However, there is no study concerning multivariable. Devices actually worked in many different kinds of the environment such as thermal, light, mechanical bending, humidity and various gases. For commercialization, not fewer than two variables of mechanism analysis have to be investigated. Analyzing the phenomenon of shifted characteristics under the change of multivariable may be able to be the importance with developing improved dielectric and encapsulation layer materials. In this study, we have fabricated flexible pentacene TFTs on polymer substrates and observed electrical characteristics of pentacene TFTs exposed to tensile and compressive strains at the different values of temperature like room temperature (RT), 40, 50, $60^{\circ}C$. Effects of bending and heating on the device performance of pentacene TFT will be discussed in detail.

  • PDF

16M-Color LTPS TFT-LCD 디스플레이 응용을 위한 1:12 MUX 기반의 1280-RGB $\times$ 800-Dot 드라이버 (A 1280-RGB $\times$ 800-Dot Driver based on 1:12 MUX for 16M-Color LTPS TFT-LCD Displays)

  • 김차동;한재열;김용우;송남진;하민우;이승훈
    • 대한전자공학회논문지SD
    • /
    • 제46권1호
    • /
    • pp.98-106
    • /
    • 2009
  • 본 논문에서는 ultra mobile PC (UMPC) 및 휴대용 기기 시스템 같이 고속으로 동작하며 고해상도 저전력 및 소면적을 동시에 요구하는 16M-color low temperature Poly silicon (LTPS) thin film transistor liquid crystal display (TFT-LCD) 응용을 위한 1:12 MUX 기반의 1280-RGB $\times$ 800-Dot 70.78mW 0.13um CMOS LCD driver IC (LDI) 를 제안한다. 제안하는 LDI는 저항 열 구조를 사용하여 고해상도에서 전력 소모 및 면적을 최적화하였으며 column driver는 LDI 전체 면적을 최소화하기 위해 하나의 column driver가 12개의 채널을 구동하는 1:12 MUX 구조로 설계하였다. 또한 신호전압이 rail-to-rail로 동작하는 조건에서 높은 전압 이득과 낮은 소비전력을 얻기 위해 class-AB 증폭기 구조를 사용하였으며 고화질을 구현하기 위해 오프 셋과 출력편차의 영향을 최소화하였다 한편, 최소한의 MOS 트랜지스터 소자로 구현된 온도 및 전원전압에 독립적인 기준 전류 발생기를 제안하였으며, 저전력 설계를 위하여 차세대 시제품 칩의 source driver에 적용 가능한 새로운 구조의 slew enhancement기법을 추가적으로 제안하였다. 제안하는 시제품 LDI는 0.13um CMOS 공정으로 제작되었으며, 측정된 source driver 출력 정착 시간은 high에서 low 및 low에서 high 각각 1.016us, 1.072us의 수준을 보이며, source driver출력 전압 편차는 최대 11mV를 보인다. 시제품 LDI의 칩 면적은 $12,203um{\times}1500um$이며 전력 소모는 1.5V/5.5V 전원 저압에서 70.78mW이다.