Browse > Article

Property of Nickel Silicides with Hydrogenated Amorphous Silicon Thickness Prepared by Low Temperature Process  

Kim, Jongryul (Department of Materials Science and Engineering, University of Seoul)
Choi, Youngyoun (Department of Materials Science and Engineering, University of Seoul)
Park, Jongsung (Department of Materials Science and Engineering, University of Seoul)
Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
Publication Information
Korean Journal of Metals and Materials / v.46, no.11, 2008 , pp. 762-769 More about this Journal
Abstract
Hydrogenated amorphous silicon(a-Si : H) layers, 120 nm and 50 nm in thickness, were deposited on 200 $nm-SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by E-beam evaporation. Finally, 30 nm-Ni/120 nm a-Si : H/200 $nm-SiO_2$/single-Si and 30 nm-Ni/50 nm a-Si:H/200 $nm-SiO_2$/single-Si were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 30 minute. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide on the 120 nm a-Si:H substrate showed high sheet resistance($470{\Omega}/{\Box}$) at T(temperature) < $450^{\circ}C$ and low sheet resistance ($70{\Omega}/{\Box}$) at T > $450^{\circ}C$. The high and low resistive regions contained ${\zeta}-Ni_2Si$ and NiSi, respectively. In case of microstructure showed mixed phase of nickel silicide and a-Si:H on the residual a-Si:H layer at T < $450^{\circ}C$ but no mixed phase and a residual a-Si:H layer at T > $450^{\circ}C$. The surface roughness matched the phase transformation according to the silicidation temperature. The nickel silicide on the 50 nm a-Si:H substrate had high sheet resistance(${\sim}1k{\Omega}/{\Box}$) at T < $400^{\circ}C$ and low sheet resistance ($100{\Omega}/{\Box}$) at T > $400^{\circ}C$. This was attributed to the formation of ${\delta}-Ni_2Si$ at T > $400^{\circ}C$ regardless of the siliciation temperature. An examination of the microstructure showed a region of nickel silicide at T < $400^{\circ}C$ that consisted of a mixed phase of nickel silicide and a-Si:H without a residual a-Si:H layer. The region at T > $400^{\circ}C$ showed crystalline nickel silicide without a mixed phase. The surface roughness remained constant regardless of the silicidation temperature. Our results suggest that a 50 nm a-Si:H nickel silicide layer is advantageous of the active layer of a thin film transistor(TFT) when applying a nano-thick layer with a constant sheet resistance, surface roughness, and ${\delta}-Ni_2Si$ temperatures > $400^{\circ}C$.
Keywords
nickel silicide; ICP-CVD; hydrogenated amorphous silicon; nano-thick process; RTA;
Citations & Related Records

Times Cited By SCOPUS : 2
연도 인용수 순위
1 C. W. Mclaughlin, Microdisplay Market Opportunities, in Microdisplay Int. Conference Digest of Tech. Papers, p.21-23 (2001)
2 J. P. Gambino and E. G. Colgan, Mater. Chem. Phys. 52, 99 (1998)   DOI   ScienceOn
3 C. Lavoie, F. M. d`Heurle, C. Detavernier, and C. Cabral, J. Microelectronic Engin. 70, 144 (2003)   DOI   ScienceOn
4 J. R. Kim, Y. Y. Choi, J. S. Park, and O. S. Song, J. Kor. Academic Industrial Soc. 9, 303 (2008)   DOI
5 L. A. Clevenger, and C.V. Thompson, J. Appl. Phys. 67, 1325 (1990)   DOI
6 J. D. Hwang, J. Y. Chang, and C. Y. Wu, Appl. Surf. Sci. 249, 65 (2005)   DOI   ScienceOn
7 J. D. Hwang, and K. S. Lee, J. Electrochemical society 155, H259-H262 (2008)   DOI   ScienceOn
8 D. B. Williams, and C. B. Carter, Transmission Electron Microscopy Diffraction , 1st ed., p.273-280, Plenum Press, NewYork, USA (1996)
9 J. A. Kittl, M. A. Pawlak, A. Lauwers, C. Demeurisse, K. Opsomer, K. G. Anil, C. Vrancken, M. J. H. van Dal, A. Veloso, S. Kubicek, P. Absil, K. Maex, and S. Biesemans, IEEE Electron Device Letters 27, 34 (2006)   DOI   ScienceOn
10 E. G. Colgan, J. P. Gambino, and Q. Z. Hong, Mater. Sci. Engin. 16, 43 (1996)   DOI   ScienceOn
11 B. A. Julies, D. Knoesen, R. Pretorius, and D. Adams, Thin Solid Films 347, 201 (1999)   DOI   ScienceOn
12 Y. Kawazu, H, Kudo, S. Onari, and T. Arai, Japanese J. Appl. Phys. 29, 729 (1990)   DOI
13 N. Ibaraki, Mar. Res. Soc. Proce. 345, 3 (1994)
14 R. Hattori, Y. Tanida, and J. Shirafuji, Mar. Res. Soc. Proce. 345, 217 (1994)
15 J. Jang, Materials Today 9, 46 (2006)
16 J. A. Kittl, A. Lauwers, C. Demeurisse, C. Vrancken, S. Kubicek, P. Absil, and S. Biesemans, Appl. Phys. Lett. 90, 172107 (2007)   DOI   ScienceOn
17 D. Striakhilev, A. Nathan, Y. Vyganenko, P. Servati, C. H. Lee, and A. Sazonov, Journal of display technology 2, 364 (2006)   DOI   ScienceOn
18 M. C. Poon, C. H. Ho, F. Deng, S. S. Lau, and H. Wong, Microelectronics Reliability 38, 1495 (1998)   DOI   ScienceOn
19 D. B. Williams, and C. B. Carter, Transmission Electron Microscopy Basic, 1st ed., P.152-170, Plenum Press, NewYork, USA. (1996)