Property of Nickel Silicides with Hydrogenated Amorphous Silicon Thickness Prepared by Low Temperature Process

나노급 수소화된 비정질 실리콘층 두께에 따른 저온형성 니켈실리사이드의 물성 연구

  • Kim, Jongryul (Department of Materials Science and Engineering, University of Seoul) ;
  • Choi, Youngyoun (Department of Materials Science and Engineering, University of Seoul) ;
  • Park, Jongsung (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 김종률 (서울시립대학교 신소재공학과) ;
  • 최용윤 (서울시립대학교 신소재공학과) ;
  • 박종성 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Received : 2008.07.30
  • Published : 2008.11.25

Abstract

Hydrogenated amorphous silicon(a-Si : H) layers, 120 nm and 50 nm in thickness, were deposited on 200 $nm-SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by E-beam evaporation. Finally, 30 nm-Ni/120 nm a-Si : H/200 $nm-SiO_2$/single-Si and 30 nm-Ni/50 nm a-Si:H/200 $nm-SiO_2$/single-Si were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 30 minute. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide on the 120 nm a-Si:H substrate showed high sheet resistance($470{\Omega}/{\Box}$) at T(temperature) < $450^{\circ}C$ and low sheet resistance ($70{\Omega}/{\Box}$) at T > $450^{\circ}C$. The high and low resistive regions contained ${\zeta}-Ni_2Si$ and NiSi, respectively. In case of microstructure showed mixed phase of nickel silicide and a-Si:H on the residual a-Si:H layer at T < $450^{\circ}C$ but no mixed phase and a residual a-Si:H layer at T > $450^{\circ}C$. The surface roughness matched the phase transformation according to the silicidation temperature. The nickel silicide on the 50 nm a-Si:H substrate had high sheet resistance(${\sim}1k{\Omega}/{\Box}$) at T < $400^{\circ}C$ and low sheet resistance ($100{\Omega}/{\Box}$) at T > $400^{\circ}C$. This was attributed to the formation of ${\delta}-Ni_2Si$ at T > $400^{\circ}C$ regardless of the siliciation temperature. An examination of the microstructure showed a region of nickel silicide at T < $400^{\circ}C$ that consisted of a mixed phase of nickel silicide and a-Si:H without a residual a-Si:H layer. The region at T > $400^{\circ}C$ showed crystalline nickel silicide without a mixed phase. The surface roughness remained constant regardless of the silicidation temperature. Our results suggest that a 50 nm a-Si:H nickel silicide layer is advantageous of the active layer of a thin film transistor(TFT) when applying a nano-thick layer with a constant sheet resistance, surface roughness, and ${\delta}-Ni_2Si$ temperatures > $400^{\circ}C$.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. D. Striakhilev, A. Nathan, Y. Vyganenko, P. Servati, C. H. Lee, and A. Sazonov, Journal of display technology 2, 364 (2006) https://doi.org/10.1109/JDT.2006.885153
  2. C. W. Mclaughlin, Microdisplay Market Opportunities, in Microdisplay Int. Conference Digest of Tech. Papers, p.21-23 (2001)
  3. J. Jang, Materials Today 9, 46 (2006)
  4. N. Ibaraki, Mar. Res. Soc. Proce. 345, 3 (1994)
  5. R. Hattori, Y. Tanida, and J. Shirafuji, Mar. Res. Soc. Proce. 345, 217 (1994)
  6. J. P. Gambino and E. G. Colgan, Mater. Chem. Phys. 52, 99 (1998) https://doi.org/10.1016/S0254-0584(98)80014-X
  7. E. G. Colgan, J. P. Gambino, and Q. Z. Hong, Mater. Sci. Engin. 16, 43 (1996) https://doi.org/10.1016/0927-796X(95)00186-7
  8. C. Lavoie, F. M. d`Heurle, C. Detavernier, and C. Cabral, J. Microelectronic Engin. 70, 144 (2003) https://doi.org/10.1016/S0167-9317(03)00380-0
  9. J. R. Kim, Y. Y. Choi, J. S. Park, and O. S. Song, J. Kor. Academic Industrial Soc. 9, 303 (2008) https://doi.org/10.5762/KAIS.2008.9.2.303
  10. D. B. Williams, and C. B. Carter, Transmission Electron Microscopy Basic, 1st ed., P.152-170, Plenum Press, NewYork, USA. (1996)
  11. B. A. Julies, D. Knoesen, R. Pretorius, and D. Adams, Thin Solid Films 347, 201 (1999) https://doi.org/10.1016/S0040-6090(99)00004-8
  12. M. C. Poon, C. H. Ho, F. Deng, S. S. Lau, and H. Wong, Microelectronics Reliability 38, 1495 (1998) https://doi.org/10.1016/S0026-2714(98)00045-6
  13. L. A. Clevenger, and C.V. Thompson, J. Appl. Phys. 67, 1325 (1990) https://doi.org/10.1063/1.345685
  14. Y. Kawazu, H, Kudo, S. Onari, and T. Arai, Japanese J. Appl. Phys. 29, 729 (1990) https://doi.org/10.1143/JJAP.29.729
  15. J. A. Kittl, M. A. Pawlak, A. Lauwers, C. Demeurisse, K. Opsomer, K. G. Anil, C. Vrancken, M. J. H. van Dal, A. Veloso, S. Kubicek, P. Absil, K. Maex, and S. Biesemans, IEEE Electron Device Letters 27, 34 (2006) https://doi.org/10.1109/LED.2005.861404
  16. J. A. Kittl, A. Lauwers, C. Demeurisse, C. Vrancken, S. Kubicek, P. Absil, and S. Biesemans, Appl. Phys. Lett. 90, 172107 (2007) https://doi.org/10.1063/1.2732820
  17. J. D. Hwang, J. Y. Chang, and C. Y. Wu, Appl. Surf. Sci. 249, 65 (2005) https://doi.org/10.1016/j.apsusc.2004.11.033
  18. J. D. Hwang, and K. S. Lee, J. Electrochemical society 155, H259-H262 (2008) https://doi.org/10.1149/1.2840618
  19. D. B. Williams, and C. B. Carter, Transmission Electron Microscopy Diffraction , 1st ed., p.273-280, Plenum Press, NewYork, USA (1996)