• 제목/요약/키워드: Simple formula for conditional Wiener integral

검색결과 15건 처리시간 0.026초

MODIFIED CONDITIONAL YEH-WIENER INTEGRAL WITH VECTOR-VALUED CONDITIONING FUNCTION

  • Chang, Joo-Sup
    • 대한수학회지
    • /
    • 제38권1호
    • /
    • pp.49-59
    • /
    • 2001
  • In this paper we introduce the modified conditional Yeh-Wiener integral. To do so, we first treat the modified Yeh-Wiener integral. And then we obtain the simple formula for the modified conditional Yeh-Wiener integral and valuate the modified conditional Yeh-Wiener integral for certain functional using the simple formula obtained. Here we consider the functional using the simple formula obtained. Here we consider the functional on a set of continuous functions which are defined on various regions, for example, triangular, parabolic and circular regions.

  • PDF

A NOTE ON THE MODIFIED CONDITIONAL YEH-WIENER INTEGRAL

  • Chang, Joo-Sup;Ahn, Joong-Hyun
    • 대한수학회논문집
    • /
    • 제16권4호
    • /
    • pp.627-635
    • /
    • 2001
  • In this paper, we first introduce the modified Yeh-Wiener integral and then consider the modified conditional Yeh-Wiener integral. Here we use the space of continuous functions on a different region which was discussed before. We also evaluate some modified conditional Yeh-Wiener integral with examples using the simple formula for the modified conditional Yeh-Wiener integral.

  • PDF

OPERATOR-VALUED FUNCTION SPACE INTEGRALS VIA CONDITIONAL INTEGRALS ON AN ANALOGUE WIENER SPACE II

  • Cho, Dong Hyun
    • 대한수학회보
    • /
    • 제53권3호
    • /
    • pp.903-924
    • /
    • 2016
  • In the present paper, using a simple formula for the conditional expectations given a generalized conditioning function over an analogue of vector-valued Wiener space, we prove that the analytic operator-valued Feynman integrals of certain classes of functions over the space can be expressed by the conditional analytic Feynman integrals of the functions. We then provide the conditional analytic Feynman integrals of several functions which are the kernels of the analytic operator-valued Feynman integrals.

함수 공간 적분에 대한 소고(I)

  • 장주섭
    • 한국수학사학회지
    • /
    • 제12권2호
    • /
    • pp.41-46
    • /
    • 1999
  • In this paper we first introduce the Wiener integral which is one of the function space integrals. And then we treat the conditional Wiener integral and explain the simple formula for the conditional Wiener integral with an example.

  • PDF

CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT OVER WIENER PATHS IN ABSTRACT WIENER SPACE: AN Lp THEORY

  • Cho, Dong-Hyun
    • 대한수학회지
    • /
    • 제41권2호
    • /
    • pp.265-294
    • /
    • 2004
  • In this paper, using a simple formula, we evaluate the conditional Fourier-Feynman transforms and the conditional convolution products of cylinder type functions, and show that the conditional Fourier-Feynman transform of the conditional convolution product is expressed as a product of the conditional Fourier-Feynman transforms. Also, we evaluate the conditional Fourier-Feynman transforms of the functions of the forms exp {$\int_{O}^{T}$ $\theta$(s,$\chi$(s))ds}, exp{$\int_{O}^{T}$ $\theta$(s,$\chi$(s))ds}$\Phi$($\chi$(T)), exp{$\int_{O}^{T}$ $\theta$(s,$\chi$(s))d${\zeta}$(s)}, exp{$\int_{O}^{T}$ $\theta$(s,$\chi$(s))d${\zeta}$(s)}$\Phi$($\chi$(T)) which are of interest in Feynman integration theories and quantum mechanics.

EVALUATION FORMULAS FOR AN ANALOGUE OF CONDITIONAL ANALYTIC FEYNMAN INTEGRALS OVER A FUNCTION SPACE

  • Cho, Dong-Hyun
    • 대한수학회보
    • /
    • 제48권3호
    • /
    • pp.655-672
    • /
    • 2011
  • Let $C^r$[0,t] be the function space of the vector-valued continuous paths x : [0,t] ${\rightarrow}$ $R^r$ and define $X_t$ : $C^r$[0,t] ${\rightarrow}$ $R^{(n+1)r}$ and $Y_t$ : $C^r$[0,t] ${\rightarrow}$ $R^{nr}$ by $X_t(x)$ = (x($t_0$), x($t_1$), ..., x($t_{n-1}$), x($t_n$)) and $Y_t$(x) = (x($t_0$), x($t_1$), ..., x($t_{n-1}$)), respectively, where 0 = $t_0$ < $t_1$ < ... < $t_n$ = t. In the present paper, with the conditioning functions $X_t$ and $Y_t$, we introduce two simple formulas for the conditional expectations over $C^r$[0,t], an analogue of the r-dimensional Wiener space. We establish evaluation formulas for the analogues of the analytic Wiener and Feynman integrals for the function $G(x)=\exp{{\int}_0^t{\theta}(s,x(s))d{\eta}(s)}{\psi}(x(t))$, where ${\theta}(s,{\cdot})$ and are the Fourier-Stieltjes transforms of the complex Borel measures on ${\mathbb{R}}^r$. Using the simple formulas, we evaluate the analogues of the conditional analytic Wiener and Feynman integrals of the functional G.

A GENERALIZED SIMPLE FORMULA FOR EVALUATING RADON-NIKODYM DERIVATIVES OVER PATHS

  • Cho, Dong Hyun
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.609-631
    • /
    • 2021
  • Let C[0, T] denote a generalized analogue of Wiener space, the space of real-valued continuous functions on the interval [0, T]. Define $Z_{\vec{e},n}$ : C[0, T] → ℝn+1 by $$Z_{\vec{e},n}(x)=\(x(0),\;{\int}_0^T\;e_1(t)dx(t),{\cdots},\;{\int}_0^T\;e_n(t)dx(t)\)$$, where e1,…, en are of bounded variations on [0, T]. In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on C[0, T] with the conditioning function $Z_{\vec{e},n}$ which has an initial weight and a kind of drift. As applications of the formula, we evaluate the Radon-Nikodym derivatives of various functions on C[0, T] which are of interested in Feynman integration theory and quantum mechanics. This work generalizes and simplifies the existing results, that is, the simple formulas with the conditioning functions related to the partitions of time interval [0, T].

CHANGE OF SCALE FORMULAS FOR A GENERALIZED CONDITIONAL WIENER INTEGRAL

  • Cho, Dong Hyun;Yoo, Il
    • 대한수학회보
    • /
    • 제53권5호
    • /
    • pp.1531-1548
    • /
    • 2016
  • Let C[0, t] denote the space of real-valued continuous functions on [0, t] and define a random vector $Z_n:C[0,t]{\rightarrow}\mathbb{R}^n$ by $Z_n(x)=(\int_{0}^{t_1}h(s)dx(s),{\ldots},\int_{0}^{t_n}h(s)dx(s))$, where 0 < $t_1$ < ${\cdots}$ < $ t_n=t$ is a partition of [0, t] and $h{\in}L_2[0,t]$ with $h{\neq}0$ a.e. Using a simple formula for a conditional expectation on C[0, t] with $Z_n$, we evaluate a generalized analytic conditional Wiener integral of the function $G_r(x)=F(x){\Psi}(\int_{0}^{t}v_1(s)dx(s),{\ldots},\int_{0}^{t}v_r(s)dx(s))$ for F in a Banach algebra and for ${\Psi}=f+{\phi}$ which need not be bounded or continuous, where $f{\in}L_p(\mathbb{R}^r)(1{\leq}p{\leq}{\infty})$, {$v_1,{\ldots},v_r$} is an orthonormal subset of $L_2[0,t]$ and ${\phi}$ is the Fourier transform of a measure of bounded variation over $\mathbb{R}^r$. Finally we establish various change of scale transformations for the generalized analytic conditional Wiener integrals of $G_r$ with the conditioning function $Z_n$.

INTEGRATION WITH RESPECT TO ANALOGUE OF WIENER MEASURE OVER PATHS IN WIENER SPACE AND ITS APPLICATIONS

  • Ryu, Kun-Sik
    • 대한수학회보
    • /
    • 제47권1호
    • /
    • pp.131-149
    • /
    • 2010
  • In 1992, the author introduced the definition and the properties of Wiener measure over paths in Wiener space and this measure was investigated extensively by some mathematicians. In 2002, the author and Dr. Im presented an article for analogue of Wiener measure and its applications which is the generalized theory of Wiener measure theory. In this note, we will derive the analogue of Wiener measure over paths in Wiener space and establish two integration formulae, one is similar to the Wiener integration formula and another is similar to simple formula for conditional Wiener integral. Furthermore, we will give some examples for our formulae.

AN EVALUATION FORMULA FOR A GENERALIZED CONDITIONAL EXPECTATION WITH TRANSLATION THEOREMS OVER PATHS

  • Cho, Dong Hyun
    • 대한수학회지
    • /
    • 제57권2호
    • /
    • pp.451-470
    • /
    • 2020
  • Let C[0, T] denote an analogue of Wiener space, the space of real-valued continuous functions on the interval [0, T]. For a partition 0 = t0 < t1 < ⋯ < tn < tn+1 = T of [0, T], define Xn : C[0, T] → ℝn+1 by Xn(x) = (x(t0), x(t1), …, x(tn)). In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on C[0, T] with the conditioning function Xn which has a drift and does not contain the present position of paths. As applications of the formula with Xn, we evaluate the Radon-Nikodym derivatives of the functions ∫0T[x(t)]mdλ(t)(m∈ℕ) and [∫0Tx(t)dλ(t)]2 on C[0, T], where λ is a complex-valued Borel measure on [0, T]. Finally we derive two translation theorems for the Radon-Nikodym derivatives of the functions on C[0, T].