• Title/Summary/Keyword: Silicon direct bonding

Search Result 73, Processing Time 0.022 seconds

Fabrication of an acceleration sensor using silicon micromachining and reactive ion etching (실리콘 마이크로머시닝과 RIE를 이용한 가속도센서의 제조)

  • Kim, Dong-Jin;Kim, Woo-Jeong;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.430-436
    • /
    • 1997
  • A piezoresistive acceleration sensor for 30 G has been fabricated by silicon micromachining method using SDB(silicon direct bonding) wafer. The structure of the piezoresistive acceleration sensor consists of a seismic square pillar type mass and four beams. This structure was fabricated by reactive ion etching and chemical etching using KOH-etchant. The rectangular square structure is used in order to compensate the deformation of the edges due to underetching. The fabricated sensor showed a linear output voltage-acceleration characteristics and its sensitivity was about $88{\mu}V/V{\cdot}g$ from 0 to 10 G.

  • PDF

Fabrication and Characteristics of High-sensitivity Si Hall Sensors for High-temperature Applications (고온용 고감도 실리콘 홀 센서의 제작 및 특성)

  • 정귀상;노상수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.565-568
    • /
    • 2000
  • This paper describes on the temperature characteristics of a SDB(silicon-wafer direct bonding) SOI(silicon-on-insulator) Hall sensor. Using the buried oxide $SiO_2$ as a dielectrical isolation layer, a SDB SOI Hall sensor without pn junction isolation has been fabricated on the Si/$SiO_2$/Si structure. The Hall voltage and the sensitivity of the implemented SOI Hall sensor show good linearity with respect to the applied magnetic flux density and supplied current. In the temperature range of 25 to $300^{\circ}C$, the shifts of TCO(temperature coefficient of the offset voltage) and TCS(temperature coefficient of the product sensitivity) are less than $\pm 6.7$$\times$$10^{-3}$/$^{\circ}C$ and $\pm 8.2$$\times$$10^{-4}$/$^{\circ}C$respectively. These results indicate that the SDB SOI structure has potential for the development of a silicon Hall sensor with a high-sensitivity and hip high-temperature operation.

  • PDF

Analysis of Shear Stress Type Piezoresistive Characteristics in Silicon Diaphragm Structure (실리콘 다이아프램 구조에서 전단응력형 압전저항의 특성 분석)

  • Choi, Chae-Hyoung;Choi, Deuk-Sung;Ahn, Chang-Hoi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.55-59
    • /
    • 2018
  • In this paper, we investigated the characteristics of shear stress type piezoresistor on a diaphragm structure formed by MEMS (Microelectromechanical System) technology of silicon-direct-bonding (SDB) wafers with Si/$SiO_2$/Si-sub. The diaphragm structure formed by etching the backside of the wafer using a TMAH aqueous solution can be used for manufacturing various sensors. In this study, the optimum shape condition of the shear stress type piezoresistor formed on the diaphragm is found through ANSYS simulation, and the diaphragm structure is formed by using the semiconductor microfabrication technique and the shear stress formed by boron implantation. The characteristics of the piezoelectric resistance are compared with the simulation results. The sensing diaphragm was made in the shape of an exact square. It has been experimentally found that the maximum shear stress for the same pressure at the center of the edge of the diaphragm is generated when the structure is in the exact square shape. Thus, the sensing part of the sensor has been designed to be placed at the center of the edge of the diaphragm. The prepared shear stress type piezoresistor was in good agreement with the simulation results, and the sensitivity of the piezoresistor formed on the $2200{\mu}m{\times}2200{\mu}m$ diaphragm was $183.7{\mu}V/kPa$ and the linearity of 1.3 %FS at the pressure range of 0~100 kPa and the symmetry of sensitivity was also excellent.

A Modified SDB Technology and Its Application to High-Power Semiconductor Devices (새로운 SDB 기술과 대용량 반도체소자에의 응용)

  • Kim, E.D.;Park, J.M.;Kim, S.C.;Min, M.G.;Lee, Y.S.;Song, J.K.;Kostina, A. L.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.348-351
    • /
    • 1995
  • A modified silicon direct bonding method has been developed alloying an intimate contact between grooved and smooth mirror-polished oxide-free silicon wafers. A regular set of grooves was formed during preparation of heavily doped $p^+$-type grid network by oxide-masking und boron diffusion. Void-free bonded interfaces with filing of the grooves were observed by x-ray diffraction topography, infrared, optical. and scanning electron microscope techniques. The presence of regularly formed grooves in bending plane results in the substantial decrease of dislocation over large areas near the interface. Moreover two strongly misoriented waters could be successfully bonded by new technique. Diodes with bonded a pn-junction yielded a value of the ideality factor n about 1.5 and the uniform distribution of series resistance over the whole area of horded pn-structure. The suitability of the modified technique was confirmed by I - V characteristics of power diodes and reversly switched-on dynistor(RSD) with a working area about $12cm^2$. Both devices demonstrated breakdown voltages close to the calculation values.

  • PDF

SOI wafer formation by ion-cut process and its characterization (Ion-cut에 의한 SOI웨이퍼 제조 및 특성조사)

  • Woo H-J;Choi H-W;Bae Y-H;Choi W-B
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.91-96
    • /
    • 2005
  • The silicon-on-insulator (SOI) wafer fabrication technique has been developed by using ion-cut process, based on proton implantation and wafer bonding techniques. It has been shown by SRIM simulation that 65keV proton implantation is required for a SOI wafer (200nm SOI, 400nm BOX) fabrication. In order to investigate the optimum proton dose and primary annealing condition for wafer splitting, the surface morphologic change has been observed such as blistering and flaking. As a result, effective dose is found to be in the $6\~9\times10^{16}\;H^+/cm^2$ range, and the annealing at $550^{\circ}C$ for 30 minutes is expected to be optimum for wafer splitting. Direct wafer bonding is performed by joining two wafers together after creating hydrophilic surfaces by a modified RCA cleaning, and IR inspection is followed to ensure a void free bonding. The wafer splitting was accomplished by annealing at the predetermined optimum condition, and high temperature annealing was then performed at $1,100^{\circ}C$ for 60 minutes to stabilize the bonding interface. TEM observation revealed no detectable defect at the SOI structure, and the interface trap charge density at the upper interface of the BOX was measured to be low enough to keep 'thermal' quality.

Bonding Characteristics of Directly Bonded Si wafer and Oxidized Si wafer by using Linear Annealing Method (선형열처리법으로 직접 접합된 Si 기판 및 산화된 Si 기판의 접합 특성)

  • Lee, Jin-Woo;Gang, Choon-Sik;Song, Oh-Seong;Ryu, Ji-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.665-670
    • /
    • 2000
  • Linear annealing method was developed to increase the bond strength of Si wafer pair mated at room tem­perature instead of conventional furnace annealing method. It has been known that the interval of the two mating wafer surfaces decreases and the density of gaseous phases generated at the interface increases with increase in an-nealing temperature. The new annealing method consisting of one heat source and light reflecting mirror used these two phenomena and was applied to Si$\mid$$\mid$Si and Si$\mid$$\mid$$SiO_2/Si$ bonding. The bonding interface observed directly by using IR camera and HRTEM showed clear bonding interface without any unbonded areas except the area generated by the dusts inserted into the mating interface at the room temperature. Crack opening method and direct tensile test was ap­pplied to measure the bond strength. The two methods showed similar results. The bond strength increased continuous­tly with the increase of annealing temperature.

  • PDF

Nano-scale Precision Polishing Characteristics using a Micro Quill and Magnetic Chain Structure (미세공구와 자기체인구조를 이용한 초정밀 폴리싱 특성)

  • 박성준;안병운;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.34-42
    • /
    • 2004
  • A new polishing technique for three dimensional micro/meso-scale parts is suggested using a micro quill and a magnetic chain structure. The principle of this method is to polish the target surface with the collected magnetic brushes at a micro tool by the non-uniform magnetic field generated around the tool. In a typical magnetic abrasive finishing process magnetic particles and abrasive particles are unbonded each other. But, to finish the three dimensional small parts bonded magnetic abrasive have to be used. Bonded magnetic abrasives are made from direct bonding, and their polishing characteristics are also examined. Alumina, silicon carbide and diamond micro powders are used as abrasives. Base metal matrix is carbonyl iron powder. It is found that bonded magnetic abrasives are superior to unbonded one by experiment. finally, the polished surface roughness is evaluated by atomic force microscope.

Ultra Precision Polishing of Micro Die and Mold Parts using Magnetic-assisted Machining (자기연마법을 응용한 미세금형부품의 초정밀 연마)

  • 안병운;김욱배;박성준;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1832-1835
    • /
    • 2003
  • This paper suggests the selective ultra precision polishing techniques for micro die and mold parts using magnetic-assisted machining. Fabrication of magnetic abrasive particle and their polishing performance are key technology at ultra precision polishing process of micro parts. Conventional magnetic abrasives have disadvantages. which are missing of abrasive particle and inequality between magnetic particle and abrasive particle. So, bonded magnetic abrasive particles are fabricated by several method. For example, plasma melting and direct bonding. Ferrite and carbonyl iron powder are used as magnetic particle where silicon carbide and Al$_2$O$_3$ are abrasive particle. Developed particles are analyzed using measurement device such as SEM. Possibility of magnetic abrasive and polishing performance of this magnetic abrasive particles also have been investigated. After polishing, surface roughness of workpiece is reduced from 2.927 $\mu\textrm{m}$ Rmax to 0.453 $\mu\textrm{m}$ Rmax.

  • PDF

The Vertical Trench Hall-Effect Device Using SOI Wafer (SOI Wafer를 사용한 트렌치 구조의 수직 Hall 소자의 제작)

  • Park, Byung-Hwee;Jung, Woo-Chul;Nam, Tae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.2023-2025
    • /
    • 2002
  • We have fabricated a novel vertical trench-Hall device sensitive to the magnetic field parallel to the sensor chip surface. The vertical trench-Hall device is built on SOI wafer which is produced by silicon direct bonding technology using bulk micromachining, where buried $SiO_2$ layer and surround trench define active device volume. Sensitivity up to 350 V/AT is measured.

  • PDF

Development of Ultraprecision Finishing Technique using Bonded Magnetic Abrasives (결합된 자성연마입자를 이용한 초정밀 피니싱 기술 개발)

  • 윤종학;박성준;안병운
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.59-66
    • /
    • 2003
  • This study suggests the new ultraprecision finishing techniques for micro die and mold parts using magnetic field-assisted polishing. Conventional magnetic abrasives have several disadvantages, which are missing of abrasive particle and inequal mixture between magnetic particle and abrasive particle. Therefore, bonded magnetic abrasive particles are fabricated by several method. For example, plasma melting and direct bonding. Carbonyl iron powder is used as magnetic particle there silicon carbide and alumina are abrasive particles. Developed magnetic abrasives are analyzed using SEM. Feasibility of magnetic abrasive and polishing performance of this magnetic abrasive particles also have been investigated. After polishing, surface roughness of workpiece is reduced from 85.4 ㎚ Ra to 9 ㎚ RA.