• Title/Summary/Keyword: Silicon Photodiode

Search Result 40, Processing Time 0.023 seconds

A Study on the Development of Electronic Personal Dosimeter with Silicon PIN Photodiode (실리콘 핀 포토다이오드를 이용한 전자 선량계의 설계 및 구현)

  • Yi, Un-Kun;Kwon, Seok-Geon;Kim, Jung-Seon;Sohn, Chang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2285-2288
    • /
    • 2002
  • Recently, electronic personal dosimeters based upon silicon PIN photodiode or miniature GM tube were developed and have attracted a lot of attention because of the advantages of their nature such as indication of dose rate and the cumulative dose, and facilitation of record keeping. In this paper, we have developed a high-sensitivity electronic personal dosimeter with silicon PIN photodiode. The electronic personal dosimeter is constructed with silicon PIN photodiode, preamplifier, and shaping amplifier. To show the effectiveness of electronic personal dosimeter, we conducted nuclear radiation experiments using $\gamma$-ray Ba-133, Cs-137, and Co-60. The electronic personal dosimeter have a good linearity on $\gamma$-ray energy and activity.

  • PDF

Investigation of Polycrystalline Silicon Photodiodes Utilizing Vertically Directed Current Path (수직 방향 전류를 이용한 폴리실리콘 포토다이오드에 관한 연구)

  • Song, Young-Sun;Yun, Il-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.75-76
    • /
    • 2006
  • In this paper, the polycrystalline silicon photodiodes utilizing vertically directed current path are investigated. The location of electrodes is considered with the grain direction and the current path. The relationships between grain boundaries and characteristics of photodiode are simulated to apply the vertically grown polycrystalline silicon to photodiodes. From the results, the vertically grown polycrystalline silicon photodiode is a potential candidate for CMOS image sensor. However, the increment of dark current related to grain boundaries should be reduced.

  • PDF

Fabrication of a Hydrogenated a-Si Photodiode

  • Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.1
    • /
    • pp.23-26
    • /
    • 2003
  • A photodiode capable of obtaining a sufficient photo/dark current ratio at both a forward bias state and a reverse bias state is proposed. The photodiode includes a glass substrate, an aluminum film formed as a lower electrode over the glass substrate, an alumina film formed as a schottky barrier over the aluminum film, a hydrogenated amorphous silicon film formed as a photo conduction layer over a portion of the alumina film, and a transparent conduction film formed as an upper electrode over the hydro-generated amorphous silicon film. Growth of high quality alumina($Al_{2}O_{3}$) film using anodizing technology is proposed and analyzed by experiment. We have obtained the film with a superior characteristics

High-sensitivity NIR Sensing with Stacked Photodiode Architecture

  • Hyunjoon Sung;Yunkyung Kim
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.200-206
    • /
    • 2023
  • Near-infrared (NIR) sensing technology using CMOS image sensors is used in many applications, including automobiles, biological inspection, surveillance, and mobile devices. An intuitive way to improve NIR sensitivity is to thicken the light absorption layer (silicon). However, thickened silicon lacks NIR sensitivity and has other disadvantages, such as diminished optical performance (e.g. crosstalk) and difficulty in processing. In this paper, a pixel structure for NIR sensing using a stacked CMOS image sensor is introduced. There are two photodetection layers, a conventional layer and a bottom photodiode, in the stacked CMOS image sensor. The bottom photodiode is used as the NIR absorption layer. Therefore, the suggested pixel structure does not change the thickness of the conventional photodiode. To verify the suggested pixel structure, sensitivity was simulated using an optical simulator. As a result, the sensitivity was improved by a maximum of 130% and 160% at wavelengths of 850 nm and 940 nm, respectively, with a pixel size of 1.2 ㎛. Therefore, the proposed pixel structure is useful for NIR sensing without thickening the silicon.

Implementation of Electronic Personal Dosimeter Using Silicon PIN Photodiode (실리콘 핀 포토다이오드를 이용한 능동형 방사선 피폭 전자선량계의 구현)

  • 이운근;백광렬;권석근
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.296-303
    • /
    • 2003
  • A personal portable type electronic dosimeter using silicon PIN photodiode and small GM tube is recently attracting much attention due to its advantages such as an immediate indication function of dose and dose rate, alerting function, and efficient management of radiation exposure history and dose data. We designed and manufactured a semiconductor radiation detector aimed to directly measure X-ray and v-ray irradiated in silicon PIN photodiode, without using high-priced scintillation materials. Using this semiconductor radiation detector, we developed an active electronic dosimeter, which measures the exposure dose using pulse counting method. In this case, it has a shortcoming of over-evaluating the dose that shows the difference between the dose measured with electronic dosimeter and the dose exposed to the human body in a low energy area. We proposed an energy compensation filter and developed a dose conversion algorithm to make both doses indicated on the detector and exposed to the human body proportional to each other, thus enabling a high-precision dose measurement. In order to prove its reliability in conducting personal dose measurement, crucial for protecting against radiation, the implemented electronic dosimeter was evaluated to successfully meet the IEC's criteria, as the KAERI (Korea Atomic Energy Research Institute) conducted test on dose indication accuracy, and linearity, energy and angular dependences.

A Study on the Development of Nuclear Radiation Detector with Silicon PIN Photodiode (실리콘 포토다이오드를 이용한 방사선 검출기 개발에 관한 연구)

  • Yi, Un-K.;Kim, Jung-S.;Sohn, Chang-H.;Baek, Kwang-R.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.754-756
    • /
    • 1999
  • In this paper, we have developed a high-sensitivity SNRD(Semiconductor Nuclear Radiation Detector) using silicon PIN photodiode. The SNRD is constructed with silicon PIN photodiode(S3590-05), preamplifier and shaping amplifier. To show the effectiveness of SNRD, nuclear radiation experiments are conducted with $\gamma$-ray Ba-133, Cs-137 and Co-60. The SNRD is different in characteristics of the energy spectrum to scintillation detectors. However, the SNRD have a good linearity on $\gamma$-ray energy and activity. The results of this paper can be applied to electronic personal dosimeter.

  • PDF

SOI Image Sensor Removed Sources of Dark Current with Pinned Photodiode on Handle Wafer (ICEIC'04)

  • Cho Y. S.;Lee C. W.;Choi S. Y.
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.482-485
    • /
    • 2004
  • We fabricated a hybrid bulk/fully depleted silicon on insulator (FDSOI) complementary metal oxide semiconductor (CMOS) active pixel image sensor. The active pixel is comprised of reset and source follower transistors on the SOI seed wafer, while the pinned photodiode and readout gate and floating diffusion are fabricated on the SOI handle wafer after the removal of the buried oxide. The source of dark current is eliminated by hybrid bulk/FDSOI pixel structure between localized oxidation of silicon (LOCOS) and photodiode(PD). By using the low noise hybrid pixel structure, dark currents qm be suppressed significantly. The pinned photodiode can also be optimized for quantum efficiency and reduce the noise of dark current. The spectral response of the pinned photodiode on the SOI handle wafer is very flat between 400 nm and 700 nm and the dark current that is higher than desired is about 10 nA/cm2 at a $V_{DD}$ of 2 V.

  • PDF

a-Si:H Photodiode Using Alumina Thin Film Barrier

  • Hur Chang-Wu;Dimitrijev Sima
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.179-183
    • /
    • 2005
  • A photodiode capable of obtaining a sufficient photo/ dark current ratio at both forward bias state and reverse bias state is proposed. The photodiode includes a glass substrate, an aluminum film formed as a lower electrode over the glass substrate, an alumina film formed as an insulator barrier over the aluminum film, a hydrogenated amorphous silicon film formed as a photo conduction layer over a portion of the alumina film, and a transparent conduction film formed as an upper electrode over the hydro-generated amorphous silicon film. A good quality alumina $(Al_2O_3)$ film is formed by oxidation of aluminum film using electrolyte solution of succinic acid. Alumina is used as a potential barrier between amorphous silicon and aluminum. It controls dark-current restriction. In case of photodiodes made by changing the formation condition of alumina, we can obtain a stable dark current $(\~10^{-12}A)$ in alumina thickness below $1000{\AA}$. At the reverse bias state of the negative voltage in ITO (Indium Tin Oxide), the photo current has substantially constant value of $5{\times}10^{-9}$ A at light scan of 100 1x. On the other hand, the photo/dark current ratios become higher at smaller thicknesses of the alumina film. Therefore, the alumina film is used as a thin insulator barrier, which is distinct from the conventional concept of forming the insulator barrier layer near the transparent conduction film. Also, the structure with the insulator thin barrier layer formed near the lower electrode, opposed to the ITO film, solves the interface problem of the ITO film because it provides an improved photo current/dark current ratio.

The Increase of Photodiode Efficiency by using Transparent Conductive Aluminium-doped Zinc Oxide Thin Film (Aluminium-doped Zinc Oxide 투명전도막을 적용한 Photodiode의 수광효율 향상)

  • Jeong, Yun-Hwan;Jin, Hu-Jie;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.863-867
    • /
    • 2008
  • In this paper, to increase the light current efficiency of photodiode, we fabricated aluminum-doped zinc oxide(AZO) thin films by RF magnetron sputtering. AZO thin films were deposited at low temperature of 100 $^{\circ}C$ and different RF powers of 50, 100, 150 and 200 W due to selective process technology. Then the AZO thin films were annealed at 400 $^{\circ}C$ for 1 hr in vacuum ambient to increase crystalline. The lowest resistivity of 1.35 ${\times}$ $10^{-3}$ ${\Omega}cm$ and a high transmittance over 90 % were obtained under the conditions of 3 mTorr, 100 'c and 150 W. The optimized AZO thin films were deposited as anti-reflection coating on PN junction of silicon photodiode. It was confirmed by the result of $V_r-I_{ph}$ curve that the efficiency of photodiode with AZO thin film was enhanced 17 % more than commercial photodiode.

A Study on the Characteristics Analysis and Design of High Sensitivity Silicon Photodiode for Laser Detector (레이저 검출용 고감도 실리콘 포토다이오드 제조 및 특성 분석에 관한 연구)

  • Lee, Jun-Myung;Kang, Eun-Young;Park, Keon-Jun;Kim, Yong-Kab
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.5
    • /
    • pp.555-560
    • /
    • 2014
  • In order to improve spectrum sensitivity of photodiode for detection of the laser wavelength at 850 nm ~ 1000 nm of near-infrared band, this study has produced silicon-based photodiode whose area is $5000{\mu}m{\times}2000{\mu}m$, and the thickness is $280{\mu}m$. It was packed by the TO-5 type. The electrical properties of the dark currents have valued of approximately 0.1 nA for 5 V reverse bias, while the capacitance showed 32.5 pF at frequency range of 1 kHz and about 32.4 pF at the range of 200 kHz for 0 V. In addition, the rising time of output signal was as fast response as 20.92 ns for 10V. For the optical properties, the best spectrum sensitivity was 0.57 A/W for 890 nm, while it was relatively excellent value of 0.37 A/W for 1,000 nm. Over all, there were good spectrum sensitivity for this diode over the range of 870 ~ 920 nm.