DOI QR코드

DOI QR Code

High-sensitivity NIR Sensing with Stacked Photodiode Architecture

  • Hyunjoon Sung (Department of ICT Integrated Safe Ocean Smart Cities Engineering, Dong-A University) ;
  • Yunkyung Kim (Department of ICT Integrated Safe Ocean Smart Cities Engineering, Dong-A University)
  • Received : 2022.09.28
  • Accepted : 2023.01.10
  • Published : 2023.04.25

Abstract

Near-infrared (NIR) sensing technology using CMOS image sensors is used in many applications, including automobiles, biological inspection, surveillance, and mobile devices. An intuitive way to improve NIR sensitivity is to thicken the light absorption layer (silicon). However, thickened silicon lacks NIR sensitivity and has other disadvantages, such as diminished optical performance (e.g. crosstalk) and difficulty in processing. In this paper, a pixel structure for NIR sensing using a stacked CMOS image sensor is introduced. There are two photodetection layers, a conventional layer and a bottom photodiode, in the stacked CMOS image sensor. The bottom photodiode is used as the NIR absorption layer. Therefore, the suggested pixel structure does not change the thickness of the conventional photodiode. To verify the suggested pixel structure, sensitivity was simulated using an optical simulator. As a result, the sensitivity was improved by a maximum of 130% and 160% at wavelengths of 850 nm and 940 nm, respectively, with a pixel size of 1.2 ㎛. Therefore, the proposed pixel structure is useful for NIR sensing without thickening the silicon.

Keywords

Acknowledgement

The EDA tool was supported by the IC Design Education Center (IDEC), Korea.

References

  1. Y. Ozaki, C. Huck, S. Tsuchikawa, and S. B. Engelsen, NearInfrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications (Springer Singapore, Singapore, 2021).
  2. F. Remondino and D. Sttopa, TOF Range-Imaging Cameras (Springer-Verlag, Berlin, Germany, 2013).
  3. G. P. Agrawal, Fiber Optic Communication Systems, 4th ed. (Wiley, USA, 2010).
  4. T. Furukawa, Biological Imaging and Sensing (SpringerVerlag, Berlin, Germany, 2004).
  5. L.-H. Lai, C.-C. Hsieh, J.-L. Wu, and Y.-M. Chang, "Organic photodiode integration on Si substrates beyond 1000 nm wavelength," ACS Appl. Electron. Mater. 4, 168-176 (2022). https://doi.org/10.1021/acsaelm.1c00915
  6. OmniVision Technologies Inc., "Nyxel technology generation-2," (OmniVision Technologies Inc.), https://www.ovt. com/technologies/nyxel-technology-generation-2 (Accessed Date: Jun. 30, 2022).
  7. J. Park, Y. Lee, B. Kim, B. Kim, J. Park, E. Yeom, Y. Jung, T. Kim, H. Yoon, Y. Kim, J. Park, C.-R. Moon, and Y. Park, "Pixel technology for improving IR quantum efficiency of backside illuminated CMOS image sensor," in Proc. International Image Sensors Workshop-IISW (Snowbird, USA, Jun. 23-27, 2019), Article no. R14.
  8. J. Park, J. Jung, C.-R. Moon, S. H. Hwang, Y. W. Lee, D. W. Kim, K. H. Paik, J. R. Yoo, D. H. Lee, and K. Kim, "Deep trench isolation for crosstalk suppression in active pixel sensors with 1.7 µm pixel pitch," Jpn. J. Appl. Phys. 46, 2454-2457 (2007). https://doi.org/10.1143/JJAP.46.2454
  9. S. Yokogawa, I. Oshiyama, H. Ikeda, Y. Ebiko, T. Hirano, S. Saito, T. Oinoue, Y. Hagimoto, and H. Iwamoto, "IR sensitivity enhancement of CMOS image sensor with diffractive light trapping pixels," Sci. Rep. 7, 3882 (2017).
  10. H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garin, and R. Alcubilla, "Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency," Nat. Nanotechnol. 10, 624-628 (2015). https://doi.org/10.1038/nnano.2015.89
  11. A. Ono, K. Hashimot, T. Yoshinaga, and N. Teranishi, "Plasmonic diffraction for the sensitivity enhancement of silicon image sensor," in Proc. International Image Sensor WorkshopIISW (Virtue Conference, Sep. 20-23, 2021), Article no. P11.
  12. J. Nakamura, Image Sensors and Signal Processing for Digital Still Cameras (CRC press, USA, 2017), pp. 55-57.
  13. S. Sukegawa, T. Umebayashi, T. Nakajima, H. Kawanobe, K. Koseki, I. Hirota, T. Haruta, M. Kasai, K. Fukumoto, T. Wakano, K. Inoue, H. Takahashi, T. Nagano, Y. Nitta, T. Hirayama, and N. Fukushima, "A 1/4-inch 8Mpixel backilluminated stacked CMOS image sensor," in Proc. IEEE International Solid-State Circuits Conference Digest of Technical Papers (San Francisco, CA, USA, Feb. 17-21, 2013), pp. 484-485.
  14. K. Nakazawa, J. Yamamoto, S. Mori, S. Okamoto, A. Shimizu, K. Baba, N. Fujii, M. Uehara, K. Hiramatsu, H. Kumano, A. Matsumoto, K. Zaitsu, H. Ohnuma, K. Tatani, T. Hirano, and H. Iwamoto, "3D sequential process integration for CMOS image sensor," in Proc. IEEE International Electron Devices Meeting-IEDM (San Francisco, CA, USA, Dec. 11-16, 2021), pp. 30.4.1-30.4.4.
  15. H. Hiroto, Y. Iida, G. Itoh, Y. Egawa, and H. Seki, "A novel Bayer-like WRGB color filter array for CMOS Image sensors," Proc. SPIE 6492, 64921J (2007).
  16. Synopsys Co., "Sentaurus TCAD," (Synopsys Co.) https://www.synopsys.com/silicon/tcad.html (Accessed Date : Jun. 30, 2022).
  17. I.-S. Joe, Y. Lee, H. Y. Park, J. U. Kim, D. Kang, T. Kim, M. Kim, K. Lee, M. Heo, I. Ro, J. Kim, I. Park, S. Kwon, K. Yoon, D. Park, C. Lee, E. Jo, M. Jeon, C. Park, K. R. Byun, C. K. Chang, J. Hur, K. Yoon, T. Jeon, J. Lee, J. Park, B. Kim, J. C. Ahn, H. Kim, C.-R. Moon, and H.-S. Kim, "Development of advanced inter-color-filter grid on sub-micron-pixel CMOS image sensor for mobile cameras with high sensitivity and high resolution," in Proc. IEEE Symposium on VLSI Technology and Circuits-VLSI Technology and Circuits (Kyoto, Japan, Aug. 13-19, 2021), Article no. JFS4-3.
  18. Y. Kagawa, Y. Kagawa, N. Fujii, K. Aoyagi, Y. Kobayashi, S. Nishi, N. Todaka, S. Takeshita, J. Taura, H. Takahashi, Y. Nishimura, K. Tatani, M. Kawamura, H. Nakayama, K. Ohno, H. Iwamoto, S. Kadomura, and T. Hirayama, "An advanced CuCu hybrid bonding for novel stacked CMOS image sensor," in Proc. IEEE 2nd Electron Devices Technology and Manufacturing Conference-EDTM (Kobe, Japan, Mar. 13-16, 2018), pp. 65-67.
  19. K. Zaitsu, A. Matsumoto, M. Nishida, Y. Tanaka, H. Yamashita, Y. Satake, T. Watanabe, K. Araki, N. Nei, K. Nakazawa, J. Yamamoto, M. Uehara, H. Kawashima, Y. Kobayashi, T. Hirano, and K. Tatani, "A 2-layer transistor pixel stacked CMOS image sensor with oxide-based full trench isolation for large full well capacity and high quantum efficiency," in Proc. IEEE Symposium on VLSI Technology and Circuits-VLSI Technology and Circuits (Honolulu, HI, USA, Jun. 12-17, 2022), pp. 286-287.
  20. H. Tsugawa, H. Takahashi, R. Nakamura, T. Umebayashi, T. Ogita, H. Okano, K. Iwase, H. Kawashima, T. Yamasaki, D. Yoneyama, J. Hashizu, T. Nakajima, K. Murata, Y. Kanaishi, K. Ikeda, K. Tatani, T. Nagano, H. Nakayama, T. Haruta, and T. Nomoto, "Pixel/DRAM/logic 3-layer stacked CMOS image sensor technology," in Proc. IEEE International Electron Devices Meeting-IEDM (San Francisco, CA, USA, Dec. 2-6, 2017), pp. 3.2.1-3.2.4.