• Title/Summary/Keyword: Silica removal

Search Result 208, Processing Time 0.025 seconds

Removal of Methylene Blue from Water Using Porous $TiO_2$/Silica Gel Prepared by Atomic Layer Deposition

  • Sim, Chae-Won;Seo, Hyun-Ook;Kim, Kwang-Dae;Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.160-160
    • /
    • 2011
  • In the present work, $TiO_2$ fiilms supported by porous silica gel with high surface area synthesized by atomic layer deposition(ALD). Porous structure of silica substrate could be maintained even after deposit large amount of $TiO_2$ (500 cycles of ALD process), suggesting the differential growth mode of $TiO_2$ on top surface and inside the pore. All the $TiO_2$-covered silica samples showed improved MB adsorption abilities, comparing to bare one. In addition, when silica surface was covered with $TiO_2$ films, MB adsorption capacity was almost fully recovered by re-annealing process (500$^{\circ}C$, for 1 hr, in ambient pressure), whereas MB adsorption capacity of bare silica was decreased after re-heaing process. FT-IR study demonstrated that $TiO_2$ film could prevent deposition of surface-bound intermediate species during thermal decomposition of adsorbed MB molecules. Photocatalytic activity of $TiO_2$/silica sample was also investigated.

  • PDF

Effectiveness of gold nanoparticle-coated silica in the removal of inorganic mercury in aqueous systems: Equilibrium and kinetic studies

  • Solis, Kurt Louis;Nam, Go-Un;Hong, Yongseok
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.99-107
    • /
    • 2016
  • The adsorption of inorganic mercury, Hg (II), in aqueous solution has been investigated to evaluate the effectiveness of synthesized gold (Au) nanoparticle-coated silica as sorbent in comparison with activated carbon and Au-coated sand. The synthesis of the Au-coated silica was confirmed by x-ray diffraction (Bragg reflections at $38.2^{\circ}$, $44.4^{\circ}$, $64.6^{\circ}$, and $77.5^{\circ}$) and the Au loading on silica surface was $6.91{\pm}1.14mg/g$. The synthesized Au-coated silica performed an average Hg adsorption efficiency of ~96 (${\pm}2.61$) % with KD value of 9.96 (${\pm}0.32$) L/g. The adsorption kinetics of Hg(II) on to Au-coated silica closely follows a pseudo-second order reaction where it is found out to have an initial adsorption rate of $4.73g/{\mu}g/min/$ and overall rate constant of $4.73{\times}10^{-4}g/{\mu}g/min/$. Au-coated silica particles are effective in removing Hg (II) in aqueous solutions due to their relatively high KD values, rapid adsorption rate, and high overall efficiency that can even decrease mercury levels below the recommended concentrations in drinking water.

Functionalized magnetite / silica nanocomposite for oily wastewater treatment

  • Hakimabadi, Seyfollah Gilak;Ahmadpour, Ali;Mosavian, Mohammad T. Hamed;Bastami, Tahereh Rohani
    • Advances in environmental research
    • /
    • v.4 no.2
    • /
    • pp.69-81
    • /
    • 2015
  • A new magnetite-silica core/shell nanocomposite ($Fe_3O4@nSiO_2@mSiO_2$) was synthesized and functionalized with trimethylchlorosilane (TMCS). The prepared nanocomposite was used for the removal of diesel oil from aqueous media. The characterization of magnetite-silica nanocomposite was studied by X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscopy (TEM), surface area measurement, and vibrating sample magnetization (VSM). Results have shown that the desired structure was obtained and surface modification was successfully carried out. FTIR analysis has confirmed the presence of TMCS on the surface of magnetite silica nanocomposites. The low- angle XRD pattern of nanocomposites indicated the mesoscopic structure of silica shell. Furthermore, TEM results have shown the core/shell structure with porous silica shell. Adsorption kinetic studies indicated that the nanocomposite was able to remove 80% of the oil contaminant during 2 h and fit well with the pseudo-second order model. Equilibrium studies at room temperature showed that the experimental data fitted well with Freundlich isotherm. The magnetic property of nanocomposite facilitated the separation of solid phase from aqueous solution.

A Study on the recycle of CMP Slurry Abrasives (CMP 슬러리 연마제의 재활용에 대한 연구)

  • Lee, Kyoung-Jin;Kim, Gi-Uk;Park, Sung-Woo;Choi, Woon-Shik;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.109-112
    • /
    • 2003
  • Recently, CMP (Chemical mechanical polishing) technology has been widely used for global planarization of multi-level interconnection for ULSI applications. However, COO (cost of ownership) and COC (cost of consumables) were relatively increased because of expensive slurry. In this paper, we have studied the possibility of recycle of reused silica slurry in order to reduce the costs of CMP slurry. Also, we have collected the silica abrasive powders by filtering after subsequent CMP process for the purpose of abrasive particle recycling. And then, we annealed the collected abrasive powders to promote the mechanical strength of reduced abrasion force. Finally, we compared the CMP characteristics between self-developed KOH-based silica abrasive slurry and original slurry. As our experimental results, we obtained the comparable removal rate and good planarity with commercial products. Consequently, we can expect the saving of high cost slurry.

  • PDF

Characteristics of 2-Step CMP (Chemical Mechanical Polishing) Process using Reused Slurry by Adding of Silica Abrasives (실리카 연마제가 첨가된 재활용 슬러리를 사용한 2단계 CMP 특성)

  • 서용진;이경진;최운식;김상용;박진성;이우선
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.759-764
    • /
    • 2003
  • Recently, CMP (chemical mechanical polishing) technology has been widely used for global planarization of multi-level interconnection for ULSI applications. However, COO (cost of ownership) and COC (cost of consumables) were relatively increased because of expensive slurry. In this paper, we have studied the possibility of recycle of roused silica slurry in order to reduce the costs of CMP slurry. The post-CMP thickness and within-wafer non-uniformity (WIWNU) wore measured as a function of different slurry composition. As an experimental result, the performance of reused slurry with annealed silica abrasive of 2 wt% contents was showed high removal rate and low non-uniformity. Therefore, we propose two-step CMP process as follows , In tile first-step CMP, we can polish the thick and rough film surface using remaked slurry, and then, in the second-step CMP, we can polish the thin film and fine pattern using original slurry. In summary, we can expect the saying of high costs of slurry.

Adsorptive and kinetic studies of toxic metal ions from contaminated water by functionalized silica

  • Kumar, Rajesh;Verma, Sunita;Harwani, Geeta;Patidar, Deepesh;Mishra, Sanjit
    • Membrane and Water Treatment
    • /
    • v.13 no.5
    • /
    • pp.227-233
    • /
    • 2022
  • The objective of the study, to develop adsorbent based purifier for removal of radiological and nuclear contaminants from contaminated water. In this regard, 3-aminopropyl silica functionalized with ethylenediamine tetraacetic acid (APS-EDTA) adsorbent prepared and characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Prepared APS-EDTA used for adsorptive studies of Cs(I), Co(II), Sr(II), Ni(II) and Cd(II) from contaminated water. The effect on adsorption of various parameters viz. contact time, initial concentration of metal ions and pH were also analyzed. The batch method has been employed using metal ions in solution from 1000-10000 ㎍/L, contact time 5-60 min., pH 4-10 and material quantities 50-200 mg at room temperature. The obtained adsorption data were used for drawing Freundlich and Langmuir isotherms model and both models were found suitable for explaining the metal ions adsorption on APS-EDTA. The adsorption data were followed pseudo second order reaction kinetics. The maximum adsorption capacity obtained 1.3037-1.4974 mg/g for above said metal ions. The results show that APS-EDTA have great potential to remove Cd(II), Co(II), Cs(I), Ni(II) and Sr(II) from aqueous solutions through chemisorption and physio-sorption.

Heat treatment effect on synthesis of mesoporous silica (Mesoporous Silica의 제조에 열처리가 끼치는 영향)

  • Park, Kyu-Sung;Kim, Duk-Su;Kim, Il-Doo;Kim, Ho-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1113-1115
    • /
    • 2002
  • Mesoporous silica, MCM-41, was synthesized by sol-gel method. The organic structure-directing agent must be removed to make the desired proes. To achieve this, alternative calcination method using microwave oven was adapted to this removal stage. Microwave calcination was shown to provide a novel, rapid and inexpensive method of praparing nanoporous material. It was studied how the porous structure, surface area and pore size distribution were changes under microwave calcination.

  • PDF

A Study on the Recycling of Silica Slurry Abrasives by Filtering (필터링에 의한 실리카 슬러리 연마제의 재활용에 관한 연구)

  • Seo Yong-Jin;Park Sung-Woo;Lee Woo-Sun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.11
    • /
    • pp.551-555
    • /
    • 2004
  • In this paper, in order to reduce the high COO (cost of ownership) and COC (cost of consumables), we have collected the silica abrasive powders by filtering method after subsequent CMP (chemical mechanical polishing) process for the purpose of abrasives recycling. And then, we have studied the possibility of recycle of reused silica abrasive through the analysis of particle size distribution and FE-SEM (field emission-scanning electron microscope) measurements of abrasive powders. It was annealed the collected abrasive powders to promote the mechanical strength of reduced abrasion force. Finally, we compared the CMP characteristics between self-developed KOH-based silica abrasive slurry and original slurry. As our experimental results, we obtained the comparable rate of removal and good planarity with commercial products. Consequently we can expect the saving of high cost slurry.

Synthesis of Hollow Silica by Stöber Method with Double Polymers as Templates

  • Nguyen, Anh-Thu;Park, Chang Woo;Kim, Sang Hern
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.173-176
    • /
    • 2014
  • The hollow $SiO_2$ spheres with uniform size were synthesized by a modified Stober method under the control of polyelectrolytes (PSS and PAA) as templates. This synthetic route includes the formation of spherical colloid micelle in ethanol solution, hydrolysis of TEOS under control of ammonia, and the removal of polyelectrolyte by washing or calcination. Hollow silica spheres with controllable core diameters between 100 and 270 nm and wall thickness between 15 and 50 nm have been synthesized. The influence of template solution concentration and solvent and dispersant on the formation of silica hollow spheres is studied and reported in detail.

Potential of PVA templated Silica Xerogels as Adsorbents for Rhodamine 6G

  • Pirzada, Tahira;Shah, Syed Sakhawat
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.6
    • /
    • pp.1024-1029
    • /
    • 2011
  • PVA/silica hybrid xerogels were synthesized by sonohydrolysis of a mixture of 2-way catalyzed TEOS and water solution of PVA. PVA was successfully removed from the xerogels through calcination and its removal was confirmed through TGA analysis of the calcined gel. Microstructure of the gels was studied through SEM, XRD and FTIR. Nitrogen sorption studies were conducted to find out surface area of different samples. It was found out that the samples having PVA removed through calcinations have higher surface area (411.64 $m^2$/g) than the samples (353.544 $m^2$/g) synthesized without any PVA. Adsorption properties of these xerogels synthesized by using different ratios of components were studied by taking Rhodamine G6 as a model adsorbate. The experiments were conducted at room temperature ($25^{\circ}C$). UV visible spectroscopy was used to measure the concentration of the dye before and after adsorption. The adsorption data of Rhodamine G6 on PVA modified silica is described by the Freundlich's adsorption model.