Browse > Article
http://dx.doi.org/10.12989/mwt.2022.13.5.227

Adsorptive and kinetic studies of toxic metal ions from contaminated water by functionalized silica  

Kumar, Rajesh (Water Quality Management Group, Desert Environmental Science and Technology Division)
Verma, Sunita (Water Quality Management Group, Desert Environmental Science and Technology Division)
Harwani, Geeta (Water Quality Management Group, Desert Environmental Science and Technology Division)
Patidar, Deepesh (Water Quality Management Group, Desert Environmental Science and Technology Division)
Mishra, Sanjit (Water Quality Management Group, Desert Environmental Science and Technology Division)
Publication Information
Membrane and Water Treatment / v.13, no.5, 2022 , pp. 227-233 More about this Journal
Abstract
The objective of the study, to develop adsorbent based purifier for removal of radiological and nuclear contaminants from contaminated water. In this regard, 3-aminopropyl silica functionalized with ethylenediamine tetraacetic acid (APS-EDTA) adsorbent prepared and characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Prepared APS-EDTA used for adsorptive studies of Cs(I), Co(II), Sr(II), Ni(II) and Cd(II) from contaminated water. The effect on adsorption of various parameters viz. contact time, initial concentration of metal ions and pH were also analyzed. The batch method has been employed using metal ions in solution from 1000-10000 ㎍/L, contact time 5-60 min., pH 4-10 and material quantities 50-200 mg at room temperature. The obtained adsorption data were used for drawing Freundlich and Langmuir isotherms model and both models were found suitable for explaining the metal ions adsorption on APS-EDTA. The adsorption data were followed pseudo second order reaction kinetics. The maximum adsorption capacity obtained 1.3037-1.4974 mg/g for above said metal ions. The results show that APS-EDTA have great potential to remove Cd(II), Co(II), Cs(I), Ni(II) and Sr(II) from aqueous solutions through chemisorption and physio-sorption.
Keywords
adsorption; aminopropyl silica; cesium and strontium; removal; toxic metal ions;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Rao, R.A.K. and Kashifuddin, M. (2012), "Adsorption properties of coriander seed powder (Coriandrum sativum): extraction and pre-concentration of Pb (II), Cu (II) and Zn (II) ions from aqueous solution" Adsort. Sci. Technol., 30, 127-146. https://doi.org/10.1260/0263-6174.30.2.127.   DOI
2 Shao, Jing, Z., Wang, X., Li, J. and Meng, Y. (2009), "Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2+2 from aqueous solution" J. Phys. Chem. Lett., 113, 860-864. http://doi.org/10.1021/jp8091094.   DOI
3 Prasad, P.S., Gomathi, T., Sudha, P.N., Deepa, M., Rambabu, K., and Banat, F. (2022), "Biosilica/Silk Fibroin/Polyurethane biocomposite for toxic heavy metals removal from aqueous streams", Environ. Technol. Innov., 28(102741), 1-14. https://doi.org/ 10.1016/j.eti.2022.102741   DOI
4 Tunali, S., Akar, T., Ozcan. A.S., Kiran, I. and Ozcan, A. (2006), "Equilibrium and kinetics of biosorption of lead (II) from aqueous solutions by Cephalosporium aphidicola", Sep. Purif. Technol., 47, 105-112. https://doi.org/10.1016/j.seppur.2005.06.009.   DOI
5 Wang, X., Xu, D., Chen, L., Tan, X., Zhou, X., Ren, A., Chen, C. (2006), "Sorption and complexation of Eu(III) on alumina: effects of pH, ionic strength, humic acid and chelating resin on kinetic dissociation study", Appl. Radiact. Isotopes, 64, 414- 421. http://doi.org/10.1016/j.apradiso.2005.08.010.   DOI
6 Ho, Y.S. and McKay, G. (2000), "The kinetic of sorption of divalent metal ions onto sphagnum moss peat", Water Res., 34, 735-742. http://doi.org/10.1016/S0043-1354(99)00232-8.   DOI
7 Klika, Z., Kraus, L. and Vopalka, D. (2007), "Cesium uptake from aqueous solutions by bentonite: A comparison of multicomponent sorption with ion-exchange models", Langmuir, 23, 1227-1233. http://doi.org/10.1021/la062080b.   DOI
8 Zuloaga, P. andrade, I. and Martinez, M. (2006), "Some principles of service life calculation of reinforcements and in situ corrosion and monitoring by sensors in the radioactive waste containers of El Cabril disposal (Spain)", J. Nuclear Mater., 358, 82-95. http://doi.org/10.1016/ j.jnucmat.2006.06.015.   DOI
9 Ghoul, M., Bacquet, M. and Morcellet, M. (2003), "Uptake of heavy metals from synthetic aqueous solutions using modified PEI-silica gels", Water Res., 37(2), 729-734. https://doi.org/10.1016/S0043-1354(02)00410-4.   DOI
10 Gupta, S. and Babu, B.V. (2009), "Utilization of waste product (tamarind seeds) for the removal of Cr (VI) from aqueous solution: Equlibrium, kinetics and regeneration studies", J. Environ. Manag., 90, 3013-3022. http://doi.org/10.1016/j.jenvman.2009.04.006.   DOI
11 Kumar, R., Jain, S.K., Misra, R.K., Kachwaha, M. and Khatri P.K. (2011), "Aqueous heavy metals removal by absorption on β-diketone - functionalized Styrene-DVB co polymeric resin", Int. J. Environ. Sci. Technol., 9, 79-84. http://doi.org/10.1007/s13762-011-0019-1.   DOI
12 Kumar, R. and Jain, S.K. (2011), "Synthesis, characterization and application of a new chelating resin containing 2-(4-methyl benzylidene) hydrazone", Adsort. Sci. Technol., 29, 917-926. https://doi.org/10.1260/0263-6174.29.9.917.   DOI
13 Kumar, R. and Jain, S.K. (2013), "Adsorption and kinetic studies of cesium ions from aqueous solution by functionalized silica", Desalin. Water Treat., 51, 2014-2020. http://doi.org/10.1080/19443994.2012.734734.   DOI
14 Allen, J.A. and Brown, D.A. (1995), "Isotherm analyses for single component and multi component metal sorption onto lignite", J. Chem. Technol. Biotech., 62, 17-24. https://doi.org/10.1002/jctb.280620103.   DOI
15 Abdel-Ghani, N.T., Hegazy, A.K. and El-Chaghaby, G.A. (2009), "Typha domingensis leaf powder for decontamination of aluminium, iron, zinc and lead: Biosorption kinetics and equilibrium modeling", Int. J. Environ. Sci. Technol., 6, 243- 248. https://doi.org/10.1007/BF03327628.   DOI
16 Abraham, T.N., Kumar, R., Misra, R.K. and Jain S.K. (2012), "Poly (vinyl alcohol) based MWNT hydrogel for lead ion removal from contaminated water", J. App. Polym Sci., 125, E670-E674. https://doi.org/10.1002/app.35666.   DOI
17 Aguado, J., Arsuaga, J.M., Arencibia, A., Lindo, M. and Gascon, V., (2009), "Aqueous heavy metals removal by adsorption on amine functionalized mesoporous silica", J. Hazard. Mater., 163, 213-221. http://doi.org/10.1016/j.jhazmat.2008.06.080.   DOI
18 Bagheri, H., Gholami, A. and Najafi, A. (2000), "Simultaneous preconcentration and speciation of iron(II) and iron(III) in water samples by 2-mercaptobenzimidazole-silica gel sorbent and flow injection analysis system.", Anal. Chim. Acta., 424(2), 233-242. https://doi.org/10.1016/S0003-2670(00)01151-X.   DOI
19 Demirbas, A. (2009). "Adsorption of lead and cadmium ions in aqueous solutions onto modified lignin from alkali glycerol delignication", J Hazard. Mater., 109, 221-226. http://doi.org/10.1016/j.jhazmat.2004.04.002.   DOI
20 Dizge, N., Keskinler, B. and Barlas, H. (2009), "Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin", J. Hazard. Mater., 167, 915-926. http://doi.org/10.1016/j. jhazmat.2009.01.073.   DOI
21 Manohar, D.M., Noeline, B.F. and Anirudhan, T.S. (2006), "Adsorption performance of Al-pillared bentonite clay for the removal of cobalt (II) from aqueous phase", App. Clay Sci., 31, 194-206. https://doi.org/10.1016/j.clay.2005.08.008.   DOI
22 Rambabu, K., Bharath, G., Banat, F. and Show, P.L. (2020), "Biosorption performance of date palm empty fruit bunch wastes for toxic hexavalent chromium removal", Environ. Res.,187, 109694, 1-11. https://doi.org/10.1016/j.envres.2020.109694.   DOI
23 Rambabu, K., Yammahi, J.A., Bharath G., Thanigaivelan A., Sivarajasekar, N. and Banat, F. (2021), "Nano-activated carbon derived from date palm coir waste for efficient sequestration of noxious 2,4-dichlorophenoxyacetic acid herbicide", Chemosphere, 282, 131103, 1-12. https://doi.org/10.1016/j.chemosphere.2021.131103.   DOI
24 Langmuir, I. (1916), "The constitution and fundamental properties of solids and liquids", J. Am. Chem. Soc., 38, 2221-2295.   DOI
25 Gupta, V.K., Kumar, R., Nayak, A., Saleh, T.A., Barakat, M.A. (2013), "Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review", Adv. Coll. Interf. Sci., 193, 24-34. http://doi.org/10.1016/j.cis.2013.03.003.   DOI
26 Ibrahim, G.M. (2010), "Removal of 60Co and 134Cs radionuclides from aqueous solution using titanium tungstate ion exchanger", Desalin. Water Treat., 12, 418-426. https://doi.org/10.5004/dwt.2010.999.   DOI
27 Ibrahim, G.M., EI-Gammal, B. and EI-Naggar, I.M. (2003), "Selectivity modification of some alkali metal ions on silicon antimonite as cation exchanger", Curr. Top. Colloid. Interf. Sci., 3, 159-165.
28 Inglezakis, V.J., Loizidon, M.D. and Grigoropoulou, H.P. (2003), "Ion exchange of Pb2+, Cu2+, Fe3+, and Cr3+ on natural clinoptilolite: Selectivity determination and influence of acidity on metal uptake", J. Colloid. Interf. Sci., 261, 49-54. https://doi.org/10.1016/S0021-9797(02)00244-8.   DOI
29 Ewecharoen, A., Thiravetyan, P., Wendel, E. and Bertagnolli, H. (2009), "Nickel adsorption bysodium polyacrylate-grafted activated carbon", J. Hazard. Mater., 171, 335-339. HTTP://DOI.ORG/10.1016/j.jhazmat.2009.06.008.   DOI
30 Freundlich, H.M.F. (1906), "uber die adsorption in lasungen", Zeitschrift fur Physikalische Chemie, 57, 385-470.
31 Jal, P.K., Dutta, R.K., Sudershan, M., Saha, A., Bhattacharyya, S.N., Chintalapudi, S.N., Mishra, B.K. (2001), Extraction of metal ions using chemically modified silica gel: A PIXE analysis", Talanta, 55(2), 233-240. https://doi.org/10.1016/S0039-9140(00)00678-0.   DOI
32 Jung, J., Shin, B., Park, K. Y., Won S. and Cho, J. (2019) "Pilot scale membrane separation of plating wastewater by nano- filtration and reverse osmosis", Membr. Water Treat., 10(3), 239-244. https://doi.org/10.12989/mwt.2019.10.3.239.   DOI
33 Kang, K., Kim, S.S., Choi, J.W. and Kwon, S.H. (2008), "Sorption of Cu(II) and Cd(II) onto acid and base pretreated granular activated carbon and activated carbon fiber samples", J. Ind. Eng. Chem., 14, 131-135. https://doi.org /10.1016/j.jiec.2007.08.007.   DOI
34 Kemp, R.V. and Bennett, D.G. (2006), "White M: Recent trends and developments in dialogue on radioactive waste management: Experience from the UK", J. Environ. Int., 32, 1021-1032. http://doi.org/10.1016/j.envint.2006.06.010.   DOI
35 Muthusaravanan, S., Balasubramani, K., Suresh, R., Ganesh, R.S., Sivarajasekar, N., Arul, H., Rambabu, K., Bharath, G. Sathishkumar, V.E., Murthy, A.P. and Banat, F. (2021), "Adsorptive removal of noxious atrazine using graphene oxide nanosheets: Insights to process optimization, equilibrium, kinetics, and density functional theory calculations", Environ. Res., 200(111428), 1-13. https://doi.org/10.1016/j.envres.2021.111428   DOI
36 Chen, C., Hu, J., Xu, D., Tan, X., Meng, Y. and Wang, X. (2008), "Surface complexation of Sr(II) and Eu(II) adsorption onto oxidized multi carbon nanotubes", J Colloid. Interf. Sci., 323, 33-41. https://doi.org/10.1016/j.jcis.2008.04.046.   DOI
37 Garcia-Valls, R., Hrdiicka, A., Perulka, J., Havel, J., Deorkar, N.V., Tavlarides, L.L., Munoz, M., Valiente, M (2001), "Separation of rare earth elements by high performance liquid chromatography using a covalent modified silica gel column", Anal. Chim. Acta, 439(2), 247-253. https://doi.org/10.1016/S0003-2670(01)01044-3.   DOI
38 Melville, G., Liu, S.F. and Allen, B. (2006), "A theoretical model for the production of Ac-225 for cancer therapy by photon- induced transmutation of Ra-226", J. Appl. Radiat. Isotope, 64, 979-988. http://doi.org/10.1016/j. apradiso.2006.05.002.   DOI
39 Misra, R.K., Jain, S.K. and Khatri, P.K. (2011), "Iminodiacetic acid functionalized cation exchange resin for adsorptive removal of Cr(VI), Cd(II), Ni(II) and Pb(II) from their aqueous solutions", J. Hazard. Mat., 185, 1508-1512. https://doi.org/10.1016/j.jhazmat.2010.10.077   DOI
40 Mohan, S. and Sreelakshmi, G. (2008), "Fixed bed column study for heavy metal removal using phosphate treated rice husk", J. Hazard. Mat., 153, 75-82. http://doi.org/10.1016/j.jhazmat.2007.08.021.   DOI
41 Harish, N., Janardhan, P. and Sangami, S. (2018) "Effective adsorption of lead and copper from aqueous solution by samaneasaman and banana stem'', Adv. Environ. Res., 7(3), 225-237. https://doi.org/10.12989 /aer.2019.7.3.225   DOI
42 Sureshkumar, N., Bhat S., Srinivasan S., Gnanasundaram N., Thanapalan M., Krishnamoorthy, R., Abuhimd H., Ahmed F. and Show, P.L. (2020), "Continuous phenol removal using a liquid-solid circulating fluidized Bed", Energies., 13(3839), 1-18. https://doi.org/10.3390/en13153839   DOI
43 Plecas, I. and Dimovic, S. (2006), "Curing time effect on compressive strength and incremental leaching rates of 137Cs and 60Co in cement immobilized sludge", Prog. Nucl. Energ., 48, 629-633. https://doi.org/10.1016/j.pnucene.2006.06.012.   DOI
44 Rafati, L., Mahvi, A.H., Asgari, A.R. and Hosseini, S.S. (2010), "Removal of chromium (VI) from aqueous solutions using Lewatit nano ion exchange resin", Int. J. Environ. Sci. Technol., 7,147-156. https://doi.org/10.1007/BF03326126.   DOI