Browse > Article
http://dx.doi.org/10.5012/jkcs.2011.55.6.1024

Potential of PVA templated Silica Xerogels as Adsorbents for Rhodamine 6G  

Pirzada, Tahira (Department of Chemistry, Quaid-i-Azam University)
Shah, Syed Sakhawat (Department of Chemistry, Hazara University)
Publication Information
Abstract
PVA/silica hybrid xerogels were synthesized by sonohydrolysis of a mixture of 2-way catalyzed TEOS and water solution of PVA. PVA was successfully removed from the xerogels through calcination and its removal was confirmed through TGA analysis of the calcined gel. Microstructure of the gels was studied through SEM, XRD and FTIR. Nitrogen sorption studies were conducted to find out surface area of different samples. It was found out that the samples having PVA removed through calcinations have higher surface area (411.64 $m^2$/g) than the samples (353.544 $m^2$/g) synthesized without any PVA. Adsorption properties of these xerogels synthesized by using different ratios of components were studied by taking Rhodamine G6 as a model adsorbate. The experiments were conducted at room temperature ($25^{\circ}C$). UV visible spectroscopy was used to measure the concentration of the dye before and after adsorption. The adsorption data of Rhodamine G6 on PVA modified silica is described by the Freundlich's adsorption model.
Keywords
PVA-silica hybrids; Sol-gel processing; Rhodamine 6 G; Adsorption; Sonohydrolysis;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Avnir, D.; Levy, D.; Reisfeld, R. J. Phys. Chem. 1984, 88, 5956.   DOI
2 Malfatti, L.; Kidchob, T.; Aiello, D.; Aiello, R.; Testa, F.; Innocenzi, P. J. Phys. Chem. C 2008, 112, 16225.   DOI
3 Rao, A. P.; Rao, A. V. Mater. Lett. 2003, 57, 3741.   DOI
4 Grandi, S.; Tomasi, C.; Mustarelli, P.; Clemente, F.; Carbonaro, C. M. J. Sol-Gel Sci. Technol. 2007, 41, 57.   DOI
5 Rao, A. V.; Bhagat, S. D. Solid State Sci. 2004, 6, 945.   DOI
6 Seoudia, R.; Abd El Mongyb, S.; Shabaka, A. A. Physica B 2008, 403, 1781.   DOI
7 Estella, J.; Echeverria, J. C.; Laguna, M.; Garrido, J. J. J. Non-Crystalline Solids 2007, 353, 286.   DOI
8 Innocenzi, P. J. Non-Crystalline Solids 2003, 316, 309.   DOI
9 Mansur, H. S.; Sadahira, C. M.; Souza, A. N.; Mansur, A. A. P. Mater. Sci. Eng., C 2008, 28(4), 539.   DOI   ScienceOn
10 Walker, G. M.; Weatherley, L. R. Chem. Eng. J. 2001, 83, 201.   DOI
11 Li, H.; Xu, M.; Shi, Z.; He, B. J. Colloid Interface Sci. 2004, 271, 47.   DOI
12 Haghbeen, K.; Legge, R. L. Chem. Eng. J. 2009, 150, 1.   DOI
13 Reddad, Z.; Gerente, C.; Andres, Y.; Cloirec, P. L Environ. Sci. Technol. 2002, 36(9), 2067.   DOI
14 Yang, H.; Xu, R.; Xue, X.; Li, F.; Li, G. J. Hazard Mater. 2008, 152, 690.   DOI
15 Grandi, S.; Mustarelli, P.; Magistris, A.; Gallorini, M.; Rizzio, E. J. Non-Crystalline Solids 2002, 303, 208.   DOI
16 Maniar, P. D.; Navrotsky, A.; Rabinovich, E. M.; Ying, J. Y.; Benziger, J. B. J. Non-Crystalline Solids 1990, 124, 101.   DOI
17 Brinker, C. J.; Scherer, G. W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Academic Press: San Diego, 1990.
18 Brinker, C. J. Dunphy, D. R. Curr. Opin. Coll. Int. Sci. 2006, 11, 126.   DOI
19 Mosquera, M. J.; de los Santos, D. M.; Valdez-Castro, L.; Esquivias, L. J. Non-Crystalline Solids 2008, 354, 645.   DOI
20 Fricke, J.; Tillotson, T. Thin Solid Films 1997, 297, 212.   DOI
21 Bandyopadhyay, A.; Sarkar, M. D.; Bhowmick, A. K. J. Mater. Sci. 2005, 40, 5233.   DOI
22 Rassy, H. El; Buisson, P.; Bouali, B.; Perrard, A.; Pierre, A. C. Langmuir 2003, 19, 358.   DOI
23 Awano, C. M.; Donatti, D. A.; Ibanez Ruiz, A.; Vollet, D.R. J. Non-Crystalline Solids 2009, 355, 1561.   DOI
24 Portella, J. A.; Donatti, D. A.; Ibanez Ruiz, A.; Vollet, D. R. J. Phys. Chem. C 2008, 112, 3552.   DOI
25 Mitsumata, T.; Hasegawa, C.; Kawada, H.; Kaneko, T.; Takimoto, J. React. Func. Polym. 2008, 68, 133.   DOI
26 Yano, S.; Iwata, K.; Kurita, K. Mater. Sci. Eng., C 1998, 6, 75.   DOI   ScienceOn