• 제목/요약/키워드: Si wafer Surface

검색결과 407건 처리시간 0.027초

50 ㎛ 기판을 이용한 a-Si:H/c-Si 이종접합 태양전지 제조 및 특성 분석 (a-Si:H/c-Si Heterojunction Solar Cell Performances Using 50 ㎛ Thin Wafer Substrate)

  • 송준용;최장훈;정대영;송희은;김동환;이정철
    • 한국재료학회지
    • /
    • 제23권1호
    • /
    • pp.35-40
    • /
    • 2013
  • In this study, the influence on the surface passivation properties of crystalline silicon according to silicon wafer thickness, and the correlation with a-Si:H/c-Si heterojunction solar cell performances were investigated. The wafers passivated by p(n)-doped a-Si:H layers show poor passivation properties because of the doping elements, such as boron(B) and phosphorous(P), which result in a low minority carrier lifetime (MCLT). A decrease in open circuit voltage ($V_{oc}$) was observed when the wafer thickness was thinned from $170{\mu}m$ to $50{\mu}m$. On the other hand, wafers incorporating intrinsic (i) a-Si:H as a passivation layer showed high quality passivation of a-Si:H/c-Si. The implied $V_{oc}$ of the ITO/p a-Si:H/i a-Si:H/n c-Si wafer/i a-Si:H/n a-Si:H/ITO stacked layers was 0.715 V for $50{\mu}m$ c-Si substrate, and 0.704 V for $170{\mu}m$ c-Si. The $V_{oc}$ in the heterojunction solar cells increased with decreases in the substrate thickness. The high quality passivation property on the c-Si led to an increasing of $V_{oc}$ in the thinner wafer. Short circuit current decreased as the substrate became thinner because of the low optical absorption for long wavelength light. In this paper, we show that high quality passivation of c-Si plays a role in heterojunction solar cells and is important in the development of thinner wafer technology.

열처리 방법에 따른 이종절연층 실리콘 기판쌍의 직접접합 (Direct Bonding of Heterogeneous Insulator Silicon Pairs using Various Annealing Method)

  • 송오성;이기영
    • 한국전기전자재료학회논문지
    • /
    • 제16권10호
    • /
    • pp.859-864
    • /
    • 2003
  • We prepared SOI(silicon-on-insulator) wafer pairs of Si II SiO$_2$/Si$_3$N$_4$ II Si using wafer direct bonding with an electric furnace annealing(EFA), a fast linear annealing(FLA), and a rapid thermal annealing(RTA), respectively, by varying the annealing temperatures at a given annealing process. We measured the bonding area and the bonding strength with processes. EFA and FLA showed almost identical bonding area and theoretical bonding strength at the elevated temperature. RTA was not bonded at all due to warpage, We report that FLA process was superior to other annealing processes in aspects of surface temperature, annealing time, and bonding strength.

접촉각 측정방법을 이용한 SiC 단결정의 극성표면 판별에 있어 자연산화막의 영향 (Effect of Native Oxide Layer on the Water Contact Angle to Determine the Surface Polarity of SiC Single Crystals)

  • 박진용;김정곤;김대성;유우식;이원재
    • 한국전기전자재료학회논문지
    • /
    • 제33권3호
    • /
    • pp.245-248
    • /
    • 2020
  • The wettability of silicon carbide (SiC) crystal, which has 6H-SiC and 4H-SiC regions prepared using the physical vapor transport (PVT) method, is quantitatively analyzed using dispensed deionized (DI) water droplets. Regardless of the polytypes in SiC, the average of five contact angle measurements showed a difference of about 6° between the Si-face and C-face. The contact angle on the Si-face (C-face) is measured after the removal of the native oxide using BOE (6:1), and revealed a significant decrease of the contact angle from 74.9° (68.4°) to 47.7° (49.3°) and from 75.8° (70.2°) to 51.6° (49.5°) for the 4H-SiC and 6H-SiC regions, respectively. The contact angle of the Si-face recovered over time during room temperature oxidation in air; in contrast, that of the C-face did not recover to the initial value. This study shows that the contact angle is very sensitive to SiC surface polarity, specific surface conditions, and process time. Contact angle measurements are expected to be a rapid way of determining the surface polarity and wettability of SiC crystals.

실리콘 웨이퍼 표면의 saw mark 밀도에 따른 피라미드 구조의 영향 (Effect on the Pyramid Structure with Saw Mark Density of Silicon Wafer Surface)

  • 이민지;박정은;이영민;강상묵;임동건
    • Current Photovoltaic Research
    • /
    • 제5권2호
    • /
    • pp.59-62
    • /
    • 2017
  • Surface texturing is affected the uniformity and size of pyramid with saw mark defect density. To analysis the influence of the saw mark defect density, we textured various si wafer. When the texturing process proceeds without the saw mark removal, silicon wafer of low-saw mark defect density showed small pyramid size of $3.5{\mu}m$ with the lowest average value of the reflectance of 10.6%. When texturing carried out after removal of the saw mark using the TMAH solution, we obtained a reflectance of about 11% and the large pyramid size of $5{\mu}m$. As a result, saw mark wafers showed a better pyramid structure than saw mark-free wafer. This result showed that saw mark can take place more smooth etching by the KOH solution and saw mark-free wafer is determined to be a factor that have a higher reflectance and a large pyramid.

HF 전처리시 실리콘 기판의 초기접합 메카니즘에 관한 연구 (A study on pre-bonding mechanism of Si wafer at HF pre-treatment)

  • 강경두;박진성;이채봉;주병권;정귀상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.3313-3315
    • /
    • 1999
  • Si direct bonding(SDB) technology is very attractive for both Si-on-insulator(SOI) electric devices and MEMS applications because of its stress free structure and stability. This paper presents on pre-bonding according to HF pre-treatment conditions in Si wafer direct bonding. The characteristics of bonded sample were measured under different bonding conditions of HF concentration, and applied pressure. The bonding strength was evaluated by tensile strength method. The bonded interface and the void were analyzed by using SEM and IR camera respectively. A bond characteristic on the interface was analyzed by using IT- IR. Si-F bonds on Si surface after HF pre-treatment are replaced by Si-OH during a DI water rinse. Consequently, hydrophobic wafer was bonded by hydrogen bonding of Si $OH{\cdots}(HOH{\cdots}HOH{\cdots}HOH){\cdots}OH-Si$. The bond strength depends on the HF pre-treatment condition before pre- bonding (Min:$2.4kgf/crn^2{\sim}Max:14.9kgf/crn^2$)

  • PDF

실리콘 웨이퍼 연마에서의 Break-in 모니터링 (Monitoring of Break-in time in Si wafer polishing)

  • 정석훈;박범영;박성민;이상직;이현섭;정해도;배소익;최은석;백경록
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.360-361
    • /
    • 2005
  • Rapid progress in IC fabrication technology has strong demand in polishing of silicon wafer to meet the tight specification of nanotopography and surface roughness. One of the important issues in Si CMP is the stabilization of polishing pad. If a polishing pad is not stabilized before main Si wafer polishing process, good polishing result can not be expected. Therefore, new pad must be subjected into break-in process using dummy wafers for a certain period of time to enhance its performance. After the break-in process, the main Si wafer polishing process must be performed. In this study, the characteristics of break-in process were investigated in Si wafer polishing. Viscoelastic behavior, temperature variation of pad and friction were measured to evaluate the break-in phenomenon. Also, it is found that the characteristic of the break-in seems to be related to viscoelastic behavior of pad.

  • PDF

다결정 실리콘 태양전지의 표면 텍스쳐링 및 반사방지막의 영향 (Surface Texturing and Anti-Reflection Coating of Multi-crystalline Silicon Solar Cell)

  • 전성욱;임경묵;최석환;홍영명;조경목
    • 한국표면공학회지
    • /
    • 제40권3호
    • /
    • pp.138-143
    • /
    • 2007
  • The effects of texturing and anti-reflection coating on the reflection properties of multi-crystalline silicon solar cell have been investigated. The chemical solutions of alkaline and acidic etching solutions were used for texturing at the surface of multi-crystalline Si wafer. Experiments were performed with various temperature and time conditions in order to determine the optimized etching condition. Alkaline etching solution was found inadequate to the texturing of multi-crystalline Si due to its high reflectance of about 25%. The reflectance of Si wafer texturing with acidic etching solution showed a very low reflectance about 10%, which was attributed to the formation of homogeneous. Also, deposition of ITO anti-reflection coating reduced the reflectance of multi-crystalline si etched with acidic solution($HF+HNO_3$) to 2.6%.

저압 증기 화합물 증착 공정에서 복사열전달 및 물질전달 해석 (Analysis of Radiative Heat Transfer and Mass Transfer During Multi-Wafer Low Pressure Chemical Vapor Deposition Process)

  • 박경순;최만수;조형주
    • 대한기계학회논문집B
    • /
    • 제24권1호
    • /
    • pp.9-20
    • /
    • 2000
  • An analysis of heat and mass transfer has been carried out for multi-wafer Low Pressure Chemical Vapor Deposition (LPCVD). Surface radiation analysis considering specular radiation among wafers, heaters, quartz tube and side plates of the reactor has been done to determine temperature distributions of 150 wafers in two dimensions. Velocity, temperature and concentration fields of chemical gases flowing in a reactor with multi-wafers have been then determined, which determines Si deposition growth rate and uniformity on wafers using two different surface reaction models. The calculation results of temperatures and Si deposition have been compared and found to be in a reasonable agreement with the previous experiments.

Bonded SOI 웨이퍼 제조를 위한 기초연구 (A Fundamental Study of the Bonded SOI Water Manufacturing)

  • 문도민;강성건;정해도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.921-926
    • /
    • 1997
  • SOI(Silicon On lnsulator) technology is many advantages in the gabrication of MOS(Metal-Oxide Semiconductor) and CMOS(Complementary MOS) structures. These include high speed, lower dynamic power consumption,greater packing density, increased radiation tolearence et al. In smiple form of bonded SOL wafer manufacturing, creation of a bonded SOI structure involves oxidizing at least one of the mirror polished silicon surfaces, cleaning the oxidized surface and the surface of the layer to which it will be bonded,bringing the two cleanded surfaces together in close physical proximity, allowing the subsequent room temperature bonding to proceed to completion, and than following this room temperature joining with some form of heat treatment step,and device wafer is thinned to the target thickness. This paper has been performed to investigate the possibility of the bonded SOI wafer manufacturing Especially, we focused on the bonding quality and thinning method. Finally,we achieved the bonded SOI wafer that Si layer thickness is below 3 .mu. m and average roughness is below 5.angs.

  • PDF

Ti 쇼트키 배리어 다이오드의 Al 확산 방지를 위한 SC-1 세정 효과 (Effect of SC-1 Cleaning to Prevent Al Diffusion for Ti Schottky Barrier Diode)

  • 최진석;최여진;안성진
    • 한국재료학회지
    • /
    • 제31권2호
    • /
    • pp.97-100
    • /
    • 2021
  • We report the effect of Standard Clean-1 (SC-1) cleaning to remove residual Ti layers after silicidation to prevent Al diffusion into Si wafer for Ti Schottky barrier diodes (Ti-SBD). Regardless of SC-1 cleaning, the presence of oxygen atoms is confirmed by Auger electron spectroscopy (AES) depth profile analysis between Al and Ti-silicide layers. Al atoms at the interface of Ti-silicide and Si wafer are detected, when the SC-1 cleaning is not conducted after rapid thermal annealing. On the other hand, Al atoms are not found at the interface of Ti-SBD after executing SC-1 cleaning. Al diffusion into the interface between Ti-silicide and Si wafer may be caused by thermal stress at the Ti-silicide layer. The difference of the thermal expansion coefficients of Ti and Ti-silicide gives rise to thermal stress at the interface during the Al layer deposition and sintering processes. Although a longer sintering time is conducted for Ti-SBD, the Al atoms do not diffuse into the surface of the Si wafer. Therefore, the removal of the Ti layer by the SC-1 cleaning can prevent Al diffusion for Ti-SBD.