Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.3.245

Effect of Native Oxide Layer on the Water Contact Angle to Determine the Surface Polarity of SiC Single Crystals  

Park, Jin Yong (Department of Advanced Materials Engineering, Dong-Eui University)
Kim, Jung Gon (WaferMasters, Inc.)
Kim, Dae Sung (Department of Advanced Materials Engineering, Dong-Eui University)
Yoo, Woo Sik (WaferMasters, Inc.)
Lee, Won Jae (Department of Advanced Materials Engineering, Dong-Eui University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.3, 2020 , pp. 245-248 More about this Journal
Abstract
The wettability of silicon carbide (SiC) crystal, which has 6H-SiC and 4H-SiC regions prepared using the physical vapor transport (PVT) method, is quantitatively analyzed using dispensed deionized (DI) water droplets. Regardless of the polytypes in SiC, the average of five contact angle measurements showed a difference of about 6° between the Si-face and C-face. The contact angle on the Si-face (C-face) is measured after the removal of the native oxide using BOE (6:1), and revealed a significant decrease of the contact angle from 74.9° (68.4°) to 47.7° (49.3°) and from 75.8° (70.2°) to 51.6° (49.5°) for the 4H-SiC and 6H-SiC regions, respectively. The contact angle of the Si-face recovered over time during room temperature oxidation in air; in contrast, that of the C-face did not recover to the initial value. This study shows that the contact angle is very sensitive to SiC surface polarity, specific surface conditions, and process time. Contact angle measurements are expected to be a rapid way of determining the surface polarity and wettability of SiC crystals.
Keywords
Silicon carbide; Contact angle; Native oxide layer; Wettability; Surface polarity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. A. Stein and P. Lanig, J. Cryst. Growth, 131, 71 (1993). [DOI: https://doi.org/10.1016/0022-0248(93)90397-F]   DOI
2 B. Hornetz, H. J. Michel, and J. Halbritter, J. Mater. Res., 9, 3088 (1994). [DOI: https://doi.org/10.1557/JMR.1994.3088]   DOI
3 Y. Song, S. Dhar, L. C. Feldman, G. Chung, and J. R. Williams, J. Appl. Phys., 95, 4953 (2004). [DOI: https://doi.org/10.1063/1.1690097]   DOI
4 H. Matsunami, Diamond Relat. Mater., 2, 1043 (1993). [DOI: https://doi.org/10.1016/0925-9635(93)90271-3]   DOI
5 R.C.A. Harris, J. Am. Ceram. Soc., 58, 7 (1975). [DOI: https://doi.org/10.1111/j.1151-2916.1975.tb18969.x]   DOI
6 C. P. Saini, A. Barman, D. Das, B. Satpati, S. R. Bhattacharyya, D. Kanjilal, A. Ponomaryov, S. Zvyagin, and A. Kanjilal, J. Phys. Chem. C, 121, 278 (2016). [DOI: https://doi.org/10.1021/acs.jpcc.6b08991]   DOI
7 M. Syvajarvi, R. Yakimova, and E. Janzen, J. Electrochem. Soc., 146, 1565 (1999). [DOI: https://doi.org/10.1149/1.1391805]   DOI
8 W. J. Choyke and G. Pensl, MRS Bull., 22, 25 (1997). [DOI: https://doi.org/10.1557/S0883769400032723]   DOI
9 C. H. Park, B. H. Cheong, K. H Lee, and K. J. Chang, Phys. Rev. B, 49, 4485 (1994). [DOI: https://doi.org/10.1103/PhysRevB.49.4485]   DOI
10 K. Karch, F. Bechstedt, P. Pavone, and D. Strauch, Phys. Rev. B, 53, 13400 (1995). [DOI: https://doi.org/10.1103/PhysRevB.53.13400]
11 E. Schmitt, T. Straubinger, M. Rasp, M. Vogel, and A. Wohlfart, J. Cryst. Growth, 310, 966 (2008). [DOI: https://doi.org/10.1016/j.jcrysgro.2007.11.185]   DOI
12 R. Yakimova, M. Syvajarvi, T. Iakimov, H. Jacobsson, R. Raback, A. Vehanen, and E. Janzen, J. Cryst. Growth, 217, 255 (2000). [DOI: https://doi.org/10.1016/S0022-0248(00)00488-7]   DOI
13 R. A. Stein, P. Lanig, and S. Leibenzeder, Mater. Sci. Eng., B, 11, 69 (1992). [DOI: https://doi.org/10.1016/0921-5107(92)90193-D]   DOI