• Title/Summary/Keyword: Si Nanowires

Search Result 168, Processing Time 0.028 seconds

Selective fabrication and etching of vertically aligned Si nanowires for MEMS

  • Kar, Jyoti Prakash;Moon, Kyeong-Ju;Das, Sachindra Nath;Kim, Sung-Yeon;Xiong, Junjie;Choi, Ji-Hyuk;Lee, Tae-Il;Myoung, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.27.2-27.2
    • /
    • 2010
  • In recent years, there is a strong requirement of low cost, stable microelectro mechanical systems (MEMS) for resonators, microswitches and sensors. Most of these devices consist of freely suspended microcantilevers, which are usually made by the etching of some sacrificial materials. Herein, we have attempted to use Si nanowires, inherited from the parent Si wafer, as a sacrificial material due to its porosity, low cost and ease of fabrication. Prior to the fabrication of the Si nanowires silver nanoparticles were continuously formed on the surface of Si wafer. Vertically aligned Si nanowires were fabricated from the parent Si wafers by aqueous chemical route at $50^{\circ}C$. Afterwards, the morphological and structural characteristics of the Si nanowires were investigated. The morphology of nanowires was strongly modulated by the resistivity of the parent wafer. The 3-step etching of nanowires in diluted KOH solution was carried out at room temperature in order to control the fast etching. A layer of $Si_3N_4$ (300 nm) was used for the selective fabrication of nanowires. Finally, a freely suspended bridge of zinc oxide (ZnO) was fabricated after the removal of nanowires from the parent wafer. At present, we believe that this technique may provide a platform for the inexpensive fabrication of futuristic MEMS.

  • PDF

A Characteristic study of SiC Nanowires by RF-Sputtering (RF-Sputtering 법에 의한 SiC 나노와이어의 특성연구)

  • Jeong, Chang-Gu;Kim, Tae-Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.344-349
    • /
    • 2010
  • Silicon carbide nanowires were grown by heat treatment of the films at $1200^{\circ}C$ after amorphous SiC thin films were deposited on graphite substrate by radio frequency magnetron sputtering at $600^{\circ}C$. It was confirmed that SiC nanowires with the diameter of 20-60 nm and length of about 50nm were grown from Field Emission Scanning Election Microscope (FE-SEM) and Transmission Election Microscope (TEM) observation. The diameter of nanowires was increased as heat treatment time is increased. The nanowires were identified to ${\beta}$-SiC single crystalline from X-Ray Diffraction(XRD) analysis. It was observed from this study that deposition temperature of samples was critical to the crystallization of nanowires. On the other hand, the effect of deposition time was insignificant.

Direct synthesis mechanism of amorphous $SiO_x$ nanowires from Ni/Si substrate (Ni/Si 기판을 사용하여 성장시킨 비결정질 $SiO_x$ 나노 와이어의 성장 메커니즘)

  • Song, W.Y.;Shin, T.I.;Lee, H.J.;Kim, H.;Kim, S.W.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.256-259
    • /
    • 2006
  • The amorphous $SiO_x$ nanowires were synthesized by the vapor phase epitaxy (VPE) method. $SiO_x$ nanowires were formed on silicon wafer of temperatures ranged from $800{\sim}1100^{\circ}C$ and nickel thin film was used as a catalyst for the growth of nanowires. A vapor-liquid-solid (VLS) mechanism is responsible for the catalyst-assisted amorphous $SiO_x$ nanowires synthesis in this experiment. The SEM images showed cotton-like nanostructure of free standing $SiO_x$ nanowires with the length of more than about $10{\mu}m$. The $SiO_x$ nanowires were confirmed amorphous structure by TEM analysis and EDX spectrum reveals that the nanowires consist of Si and O.

CO Gas Sensing Characteristic of ZnO Nanowires Based on the a-, cand m-plane Oriented 4H-SiC Substrate at 300℃ (a-, c-, m-면방향의 4H-SiC 기판에 형성된 ZnO 나노선 가스센서의 300℃에서 CO 가스 감지 특성)

  • Jeong, Gyeong-Hwan;Lee, Jung-Ho;Kang, Min-Seok;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.441-445
    • /
    • 2013
  • ZnO nanowires on the a-, c- and m-plane oriented 4H-SiC substrates were grown by using a high temperature tube furnace. Ti/Au electrodes were deposited on ZnO nanowires and a-, c- and m-plane 4H-SiC substrates, respectively. The shape and density of the ZnO nanowires were investigated by field emission scanning electron microscope. It was found that the growth direction of nanowires depends strongly on growth parameters such as growth temperature and pressure. In this work, The sensitivity of nanowires formed a-, c- and m-plane oriented 4H-SiC gas sensor was measured at $300^{\circ}C$ with CO gas concentration of 80%. The nanowires grown on a-plane oriented 4H-SiC show improved sensing performance than those on c- and m-plane oriented 4H-SiC due to the increased density of nanowire on a-plane 4H-SiC.

Effect of Ambient Gas to Growth of SiO2 Nanowires by Vapor Evaporation Method (기상휘발법에 의한 이산화규소 나노와이어의 성장에 미치는 가스의 영향)

  • Rho Dae-Ho;Kim Jae-Soo;Byun Dong-Jin;Lee Jae-Hoon;Yang Jae-Woong;Kim Na-Ri
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.323-333
    • /
    • 2005
  • Effects of gases to growth of $SiO_2$ nanowires were characterized. $N_2$, Ar, and $O_2$ gas's effect were determined. $SiO_2$ nanowires growth scheme was varied by kind and flow rates of gases because of amounts of $O_2$. Flow rates of gases and kind of substrates affected nanowires' diameters, lengths and morphologies of grown nano wires. With increasing flow rates of gases, nanowire's diameter increased because of additional VS and SLS reactions. By TEM characterization, We knows that, grown $SiO_2$ nanowires on Si substrate showed two shell structures. These shapes of nanowires were formed by reaction of additional SLS growth. Grown $SiO_2$ nanowires showed blue luminescence by PL characterization These Blue luminescence was due to quantum confinement effect and oxygen vacancies in the nanowires.

Atomistic Investigation of Lithiation Behaviors in Silicon Nanowires: Reactive Molecular Dynamics Simulation

  • Jeong, Hyeon;Ju, Jae-Yong;Jo, Jun-Hyeong;Lee, Gwang-Ryeol;Han, Sang-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.160.2-160.2
    • /
    • 2014
  • Recently silicon has attracted intense interest as a promising anode material of lithium-ion batteries due to its extremely high capacity of 4200 mA/g (for Li4.2Si) that is much higher than 372 mAh/g (for LiC6) of graphite. However, it seriously suffers from large volume change (even up to 300%) of the electrode upon lithiation, leading to its pulverization or mechanical failure during lithiation/delithiation processes and the rapid capacity fading. To overcome this problem, Si nanowires have been considered. Use of such Si nanowires provides their facile relaxation during lithiation/delithiation without mechanical breaking. To design better Si electrodes, a study to unveil atomic-scale mechanisms involving the volume expansion and the phase transformation upon lithiation is critical. In order to investigate the lithiation mechanism in Si nanowires, we have developed a reactive force field (ReaxFF) for Si-Li systems based on density functional theory calculations. The ReaxFF method provides a highly transferable simulation method for atomistic scale simulation on chemical reactions at the nanosecond and nanometer scale. Molecular dynamics (MD) simulations with the ReaxFF reproduces well experimental anisotropic volume expansion of Si nanowires during lithiation and diffusion behaviors of lithium atoms, indicating that it would be definitely helpful to investigate lithiation mechanism of Si electrodes and then design new Si electrodes.

  • PDF

Patterned Growth of ZnO Semiconducting Nanowires and its Field Emission Properties (ZnO 반도체 나노선의 패턴 성장 및 전계방출 특성)

  • Lee, Yong-Koo;Park, Jae-Hwan;Choi, Young-Jin;Park, Jae-Gwan
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.623-626
    • /
    • 2010
  • We synthesized ZnO nanowires patterned on Si substrate and investigated the field emission properties of the nanowires. Firstly, Au catalyst layers were fabricated on Si substrate by photo-lithography and lift-off process. The diameter of Au pattern was $50\;{\mu}m$ and the pattern was arrayed as $4{\times}4$. ZnO nanowires were grown on the Au catalyst pattern by the aid of Au liquid phase. The orientation of the ZnO nanowires was vertical on the whole. Sufficient brightness was obtained when the electric field was $5.4\;V/{\mu}m$ and the emission current was $5\;mA/cm^2$. The threshold electric field was $5.4\;V/{\mu}m$ in the $4{\times}4$ array of ZnO nanowires, which is quite lower than that of the nanowires grown on the flat Si substrate. The lower threshold electric field of the patterned ZnO nanowires could be attributed to their vertical orientation of the ZnO nanowires.

Self Growth of Silica Nanowires on a Si/SiO2 Substrate

  • Jeong, Hann-Ah;Seong, Han-Kyu;Choi, Heon-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.3
    • /
    • pp.142-145
    • /
    • 2008
  • The growth of amorphous silica nanowires by on-site feeding of silicon and oxygen is reported. The nanowires were grown on a nickel-coated oxidized silicon substrate without external silicon or oxygen sources. Transmission electron microscopy observation revealed that the nanowires, which have diameters of less than 50 nm and a length of several micrometers, were grown using a traditional vapor-liquid-solid mechanism. Blue photoluminescence was observed from these nanowires at room temperature. An approach to grow nanowires without external precursors may be useful when integrating nanowires into devices structures. This can benefit the fabrication of nanowire-based nanodevices.

Characteristics of Silicon Carbide Nanowires Synthesized on Porous Body by Carbothermal Reduction

  • Kim, Jung-Hun;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.285-289
    • /
    • 2018
  • We synthesized silicon carbide (${\beta}-SiC$) nanowires with nano-scale diameter (30 - 400 nm) and micro-scale length ($50-200{\mu}m$) on a porous body using low-grade silica and carbon black powder by carbothermal reduction at $1300-1600^{\circ}C$. The SiC nanowires were formed by vapor-liquid-solid deposition with self-evaporated Fe catalysts in low-grade silica. We investigated the characteristics of the SiC nanowires, which were grown on a porous body with Ar flowing in a vacuum furnace. Their structural, optical, and electrical properties were analyzed with X-ray diffraction (XRD), transmission electron microscopy (TEM), and selective area electron diffraction (SAED). We obtained high-quality SiC single crystalline nanowire without stacking faults that may have uses in industrial applications.

Properties of Silicon Nanowires grown by RFCVD (RFCVD 장치를 이용하여 성장한 실리콘 나노와이어의 특성)

  • Kim, Jae-Hoon;Lee, Hyung-Joo;Shin, Seok-Seung;Kim, Ki-Young;Go, Chun-Soo;Kim, Hyun-Suk;Hwang, Yong-Gyoo;Lee, Choong-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.2
    • /
    • pp.101-105
    • /
    • 2007
  • We have synthesized silicon nanowires by using RFCVD(Radio Frequency Chemical Vapor Deposition) system on Au deposited p-type Si(100) wafers, and investigated their physical and electrical properties. The silicon nanowires had been grown in the atmospheres of $H_{2},\;N_{2}\;and\;SiH_{4}$ at 10 Torr at the substrate temperatures of $700{\pm}5^{\circ}C\;and\;810{\pm}5^{\circ}C$ respectively. FE-SEM analysis revealed that diameters of the silicon nanowires are $50{\sim}60nm$ with the length of several ${\mu}m$. XRD analysis showed that the growth direction of the nanowires is Si[111]. Field emission characteristics showed that the turn-of voltages at the current of $0.01\;mA/cm^{2}$ are $10\;V/{\mu}m\;and\;8.5\;V/{\mu}m$ for the wires grown at $700{\pm}5^{\circ}C\;and\;810{\pm}5^{\circ}C$, respectively.