• Title/Summary/Keyword: Si$_x$$N_y$

Search Result 872, Processing Time 0.022 seconds

Formation of Si Nanodot by Using SiNx Thin Films (SiNx 박막을 이용한 Si Nanodot의 형성)

  • Lee, Jang Woo;Park, Ik Hyun;Shin, Byul;Chung, Chee Won
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.768-771
    • /
    • 2005
  • The deposition of silicon nitride ($SiN_x$) thin films was carried out on $SiO_2/Si$ substrate at room temperature by reactive dc magnetron sputtering. The analysis of deposited $SiN_x$ films using x-ray photoelectron spectroscopy indicated that the composition of $SiN_x$ films was Si-rich. The deposited $SiN_x$ thin films were annealed by varying annealing temperature and time. X-ray diffraction (XRD) analysis was performed in order to examine the crystallization of Si in $SiN_x$ thin films. The optical and electrical properties of $SiN_x$ thin films were measured for the observation of Si nanodot. As a result, we observed the XRD peaks that might be the Si crystals. As the annealing time and annealing temperature increased, the photoluminescence intensity of $SiN_x$ films gradually increased. The capacitance-voltage characteristics of $SiN_x$ film measured before and after annealing indicated that the trap effect of electrons or holes occurred due to the existence Si nanodots in the $SiN_x$ thin films.

Effect of Co Interlayer on the Interfacial Reliability of SiNx/Co/Cu Thin Film Structure for Advanced Cu Interconnects (미세 Cu 배선 적용을 위한 SiNx/Co/Cu 박막구조에서 Co층이 계면 신뢰성에 미치는 영향 분석)

  • Lee, Hyeonchul;Jeong, Minsu;Kim, Gahui;Son, Kirak;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.41-47
    • /
    • 2020
  • The effect of Co interlayer on the interfacial reliability of SiNx/Co/Cu thin film structure for advanced Cu interconnects was systematically evaluated by using a double cantilever beam test. The interfacial adhesion energy of the SiNx/Cu thin film structure was 0.90 J/㎡. This value of the SiNx/Co/Cu thin film structure increased to 9.59 J/㎡.Measured interfacial adhesion energy of SiNx/Co/Cu structure was around 10 times higher than SiNx/Cu structure due to CoSi2 reaction layer formation at SiNx/Co interface, which was confirmed by X-ray photoelectron spectroscopy analysis. The interfacial adhesion energy of SiNx/Co/Cu structure decreased sharply after post-annealing at 200℃ for 24 h due to Co oxidation at SiNx/Co interface. Therefore, it is required to control the CoO and Co3O4 formation during the environmental storage of the SiNx/Co/Cu thin film to achieve interfacial reliability for advanced Cu interconnections.

Anti-Reflection Coating Application of SixOy-SixNy Stacked-Layer Fabricated by Reactive Sputtering (반응성 스퍼터링으로 제작된 SixOy-SixNy 적층구조의 반사방지 코팅 응용)

  • Gim, Tzang-Jo;Lee, Boong-Joo;Shina, Paik-Kyun
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.341-346
    • /
    • 2010
  • In this paper, anti-reflection coating was investigated for decreasing the reflection in visible range of 400~650 [nm] through four staked layers of $Si_xO_y$ and $Si_xN_y$ thin films prepared by reactive sputtering method. Si single crystal of 6 [inch] diameter was used as a sputtering target. Ar and $O_2$ gases were used as sputtering gases for reactive sputtering for the $Si_xO_y$ thin film, and Ar and $N_2$ gases were used for reactive sputtering for the $Si_xN_y$ thin film. DC pulse power of 1900 [W] was used for the reactive sputtering. Refractive index and deposition rate were 1.50 and 2.3 [nm/sec] for the $Si_xO_y$, and 1.94 and 1.8 [nm/sec] for the $Si_xN_y$ thin film, respectively. Considering the simulation of the four layer anti-reflection coating structure with the above mentioned films, the $Si_xO_y-Si_xN_y$ stacked four-layer structure was prepared. The reflection measurement result for that structure showed that a "W" shaped anti-reflection was obtained successfully with a reflection of 1.7 [%] at 550 [nm] region and a reflection of 1 [%] at 400~650 [nm] range.

Nanocrystalline Si formation inside SiNx nanostructures usingionized N2 gas bombardment (이온화 N2 가스 입사를 이용한 SiNx 나노구조 내부의 Si 나노결정 형성)

  • Jung, Min-Cherl;Park, Young-Ju;Shin, Hyun-Joon;Byun, Jun-Seok;Yoon, Jae-Jin;Park, Yong-Sup
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.474-478
    • /
    • 2007
  • Nanostructures of $SiN_x$ were made by bombardment of ionized $N_2$ on Si surface and subsequent annealing. Atomic force micrograph showed the density of $SiN_x$ nanostructures was $3\times10^{10}/cm^2$. Their lateral size and height were 40$\sim$60 nm and 15 nm, respectively. The chemical state of the nanostructure was measured using X-ray photoelectron spectroscopy, which changed from $SiN_x$ to $Si_3N_4\;+\;SiN_x$ as the bombarding ionized gas current increases. Upon annealing, transmission electron micrograph showed a clear evidence for crystalline Si phase formation inside the $SiN_x$ nanostructures. Photoluminescence peak observed at around 400nm was thought to be originated from the interface states between the nanocrystalline Si and surrounding $SiN_x$ nanostructures.

Studies on the Ta-Si-n Barrier Used for Cu Interconnection (Cu배선을 위한 Ta-Si-N Barrier에 관한 연구)

  • Sin, Yeong-Hun;Kim, Jong-Cheol;Lee, Jong-Mu
    • Korean Journal of Materials Research
    • /
    • v.7 no.6
    • /
    • pp.498-504
    • /
    • 1997
  • Cu는 AI보다 비저항이 더 낮고, 일렉트로마이그레이션 내성이 더 강하기 때문에 AI을 대체하여 사용될 새로운 상부배선 재료로 널리 연구되고 있다. 그러나 Cu는 SiO$_{2}$층을 통해 Si기판 속으로 확산하는 것과 같은 열적불안정성을 갖고 있으므로 Cu 배선을 위해서는 barrier금속을 함께 사용해야 한다. 지금까지 알려진 가장 우수한 재료는 TaSi$_{x}$N$_{y}$이다. Tasi$_{x}$N$_{y}$는 90$0^{\circ}C$에서 불량이 발생하는 것으로 보고된 바 있으나, 그것의 barrier특성과 관련하여 확인하고 또 새로 조사되어야 할 내용들이 많이 있다. 본 연구에서는 반응성 스퍼터링 테크닉을 사용하여 (100)Si 웨이퍼상에 TaSi$_{x}$N$_{y}$막을 증착하고, Cu에 대한 barrier재료로서 반드시 갖추어야 할 열적 안정성을 면저항의측정, X선 회절 및 AES 깊이분석 등에 의하여 조사하였다. 스퍼터링 공정에서 N$_{2}$/Ar기체의 유량비가 15%일때 열적 안정성이 가장 우수한 TaSi$_{x}$N$_{y}$막이 얻어졌다. Ta와 TaN은 각각 $600^{\circ}C$$650^{\circ}C$에서 불량이 발생하는 반면, TaSi$_{x}$N$_{y}$는 90$0^{\circ}C$에서 불량이 발생하였다. TaSi$_{x}$N$_{y}$의 불량기구는 다음과 같다:Cu는 TaSi$_{x}$N$_{y}$막을 통과하여 TaSi$_{x}$N$_{y}$/Si계면으로 이동한 다음 Si기판내의 Si원자들과 반응한다. 그 결과 TaSi$_{x}$N$_{y}$Si가 생성된다.

  • PDF

Excimer Laser Annealing Effects of Double Structured Poly-Si Active Layer (이중 활성층(a-Si/a-SiNx)의 XeCl 엑시머 레이저 어닐링 효과)

  • 최홍석;박철민;전재홍;유준석;한민구
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.6
    • /
    • pp.46-53
    • /
    • 1998
  • A new method to form the double structured active layers of a-Si/a-SiN$_{x}$ of polycrystalline thin film transistor is proposed and poly-Si TFTs employed double structure active film are fabricated. Nitrogen ions were added to bottom amorphous silicon active film(a-SiN$_{x}$ ) and pure a-Si film deposition on a-SiN$_{x}$ was followed. The XeCl excimer laser was irradiated to crystallize double structure active film. The grain growth of upper a-Si film was also promoted in the double structured active layers of a-Si/a-SiN$_{x}$ due to the mitigation of solidification process of lower a-SiN$_{x}$ layer. Our experimental results show that the ratio of NH$_3$/SiH$_4$ is required to maintain below 0.11 for the reduction of contact resistance of n$^{+}$ poly-SiN$_{x}$ layer.r.

  • PDF

The preparation of ${SiO_x}{N_y}$ thin films by reactive RF sputtering method (고주파 반응성 스퍼터링법에 의한 ${SiO_x}{N_y}$ 박막의 제작)

  • 조승현;최영복;김덕현;정성훈;문동찬;김선태
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • The SiOxNy thin films were prepared on Si(lOO) by reactive RF sputtering method. The reactive gas ratio and the power were used as parameters for depositing SiOxNy thin fims. The properties of ${SiO_x}{N_y}$ thin tilms were investigated by XRD, XPS, refractive index and extinction coefficient analyzer (n'||'&'||'k analyzer), and FfIR. It was found by the results of the x-ray diffraction measurement that SiOxNy thin films were grown to an amorphous structure. From the results of the XPS, and the n'||'&'||'k analyzer, it was found that refractive index was intended to increase with the increasement of the relative nitrogen contents of the ${SiO_x}{N_y}$ thin films.

  • PDF

Encapsulation Method of Flexible OLED Using SiNx and Metal Film (SiNx와 금속막을 이용한 플렉시블 OLED 봉지 방법)

  • Lee, Hyoe Sun;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.3
    • /
    • pp.99-103
    • /
    • 2014
  • The encapsulation method of flexible organic light emitting devices (OLEDs) was investigated for the structure of ITO / 2-TNATA / NPB / $Alq_3$ : Rubrene (1 vol.%) / $Alq_3$ / LiF / Al / $Alq_3$ / LiF / Al (OLED #1), on which $SiN_x$ thin film was deposited and metal film was attached to protect the damage of OLED from oxygen and moisture. The $SiN_x$ thin film was deposited by plasma enhanced chemical vapor deposition (PECVD) method using $SiH_4$ of 20 sccm and $N_2$ of 15~35 sccm as reactor gases. The optimum $SiN_x$ deposition condition was found to be 20 sccm $SiH_4$ and 20 sccm $N_2$ from the Ca test of the fabricated $SiN_x$ thin film. The life time of OLED #1, OLED #1 / $SiN_x$ 200 nm, OLED #1 / $SiN_x$ 400 nm and OLED #1 / $SiN_x$ 400 nm / metal film was 7, 12, 25, and 45 hours, respectively. In conclusion, it has been shown that the lifetime of OLEDs can be improved more than 6 times by $SiN_x$ film and a metal film encapsulation.

The Effect of Multilayer Passivation Film on Life Time Characteristics of OLED Device (OLED소자의 수명에 미치는 다층 보호막의 영향)

  • Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.20-24
    • /
    • 2012
  • Multilayer passivation film on OLED with organic/inorganic hybrid structure as to diminish the thermal stress and expansion was researched to protect device from the direct damage of $O_2$ and $H_2O$ and improve life time characteristics. Red OLED doped with 1 vol.% Rubrene in $Alq_3$ was used as a basic device. The films consist of ITO(150 nm)/ELM200_HIL(50 nm)/ELM002_HTL(30 nm)/$Alq_3$: 1 vol.% Rubrene(30 nm)/$Alq_3$(30 nm) and LiF(0.7 nm)/Al(100 nm) which were formed in that order. Using LiF/$SiN_x$ as a buffer layer was determined because it significantly improved life time characteristics without suffering damage in the process of forming passivation film. Multilayer passivation film on buffer layer didn't produce much change in current efficiency, while the half life time at 1,000 $cd/m^2$ of OLED/LiF/$SiN_x$/E1/$SiN_x$ was 710 hours which showed about 1.5 times longer than OLED/LiF/$SiN_x$/E1 with 498 hours. futhermore, OLED/LiF/$SiN_x$/E1/$SiN_x$/E1/$SiN_x$ with 1301 hours showed about twice than OLED/LiF/$SiN_x$/E1/$SiN_x$ which demonstrated that superior characteristics of life time was obtained in multilayer passivation film. Through the above result, it was suggested using LiF/$SiN_x$ as a buffer layer could reduce the damage from the difference of thermal expansion coefficient in OLED with protective films, and epoxy layer in multilayer passivation film could function like a buffer between $SiN_x$ inorganic layers with relatively large thermal stress.