Browse > Article

Formation of Si Nanodot by Using SiNx Thin Films  

Lee, Jang Woo (Department of Chemical Engineering, Inha University)
Park, Ik Hyun (Department of Chemical Engineering, Inha University)
Shin, Byul (Department of Chemical Engineering, Inha University)
Chung, Chee Won (Department of Chemical Engineering, Inha University)
Publication Information
Applied Chemistry for Engineering / v.16, no.6, 2005 , pp. 768-771 More about this Journal
Abstract
The deposition of silicon nitride ($SiN_x$) thin films was carried out on $SiO_2/Si$ substrate at room temperature by reactive dc magnetron sputtering. The analysis of deposited $SiN_x$ films using x-ray photoelectron spectroscopy indicated that the composition of $SiN_x$ films was Si-rich. The deposited $SiN_x$ thin films were annealed by varying annealing temperature and time. X-ray diffraction (XRD) analysis was performed in order to examine the crystallization of Si in $SiN_x$ thin films. The optical and electrical properties of $SiN_x$ thin films were measured for the observation of Si nanodot. As a result, we observed the XRD peaks that might be the Si crystals. As the annealing time and annealing temperature increased, the photoluminescence intensity of $SiN_x$ films gradually increased. The capacitance-voltage characteristics of $SiN_x$ film measured before and after annealing indicated that the trap effect of electrons or holes occurred due to the existence Si nanodots in the $SiN_x$ thin films.
Keywords
silicon nitride; $SiN_x$; Si nanodot; sputtering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. J. Powell and J. Orton, Appl. Phys. Left., 45, 171 (1984)
2 V. G. Baru, S. Bayliss, A. P. Chernushich, and M. I. Elinson, Microelectron Eng., 111, 36 (1997)
3 C. Busseret, A. Souifi, T. Baron, S. Monfray, N. Bullet, E. Gautier, and M. N. Semeria, Mater. Sci. Eng., 237, C19 (2002)
4 M. Molinari, H. Rinnert, M. Vergnat, and P. Weisbecker, Mater. Sci. Eng., 186, B101 (2003)
5 V. A. Gritsenko, K. S. Zhuravlev, A. D. Milov, H. Wong, R. W. M. Kwok, and J. B. Xu, Thin Solid Films, 353, 20 (1999)   DOI
6 M. Tamura and H. Sunami, J. Appl. Phys., 11, 11097 (1972)   DOI
7 E. S. Snow and P. M. Cambell, Appl. Phys. Left., 1932,64 (1994)
8 U. Kahler and H. Hofmeister, Opt. Mater., 83, 17 (2001)
9 P. V. Bulkin, P. J. Swart, and B. M. Lacquet, Thin Solid Films, 241, 247 (1994)   DOI
10 S. Miyazaki, M. Narasaki, A. Suyama, M. Yamaoka, and H. Murakami, Appl. Surf Sci., 216, 252 (2003)   DOI
11 S. Lee, Y. S. Shim, H. Y. Cho, T. W. Kang, D. Y. Kim, Y. H. Lee, and K. J. Wang, Thin Solid Films, 379, 451 (2004)
12 H. Ishikuro, T. Fujji, T. Saraya, G. Hashiguchi, T. Hiramoto, and T. Ikoma, Appl. Phys. Left., 3585, 68 (1996)
13 J. Wang, Z. Ma, X. Huang, Z. Li, J. Li, Y. Bao, J. Xu, W. Li, and K. Chen, Solid State Commun., 239, 117 (2001)
14 H. Ohta, A. Nagashima, M. Hori, and T. Goto, Jpn. J. Appl. Phys., 89, 5083, (2001)   DOI   ScienceOn
15 Z. Pei and H. J. Hwang, Appl. Surf Sci., 212, 760 (2003)   DOI   ScienceOn
16 E. Leobandung, J. Guo, Y. Wang, and S. Y. Chou, Appl. Phys. Lett., 938, 67 (1995)