• Title/Summary/Keyword: Semigroup

Search Result 381, Processing Time 0.037 seconds

LONG-TIME BEHAVIOR OF A FAMILY OF INCOMPRESSIBLE THREE-DIMENSIONAL LERAY-α-LIKE MODELS

  • Anh, Cung The;Thuy, Le Thi;Tinh, Le Tran
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1109-1127
    • /
    • 2021
  • We study the long-term dynamics for a family of incompressible three-dimensional Leray-α-like models that employ the spectral fractional Laplacian operators. This family of equations interpolates between incompressible hyperviscous Navier-Stokes equations and the Leray-α model when varying two nonnegative parameters 𝜃1 and 𝜃2. We prove the existence of a finite-dimensional global attractor for the continuous semigroup associated to these models. We also show that an operator which projects the weak solution of Leray-α-like models into a finite-dimensional space is determining if it annihilates the difference of two "nearby" weak solutions asymptotically, and if it satisfies an approximation inequality.

ON SOME TYPE ELEMENTS OF ZERO-SYMMETRIC NEAR-RING OF POLYNOMIALS

  • Hashemi, Ebrahim;Shokuhifar, Fatemeh
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.183-195
    • /
    • 2019
  • Let R be a commutative ring with unity. In this paper, we characterize the unit elements, the regular elements, the ${\pi}$-regular elements and the clean elements of zero-symmetric near-ring of polynomials $R_0[x]$, when $nil(R)^2=0$. Moreover, it is shown that the set of ${\pi}$-regular elements of $R_0[x]$ forms a semigroup. These results are somewhat surprising since, in contrast to the polynomial ring case, the near-ring of polynomials has substitution for its "multiplication" operation.

REDUCED PROPERTY OVER IDEMPOTENTS

  • Kwak, Tai Keun;Lee, Yang;Seo, Young Joo
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.483-492
    • /
    • 2021
  • This article concerns the property that for any element a in a ring, if a2n = an for some n ≥ 2 then a2 = a. The class of rings with this property is large, but there also exist many kinds of rings without that, for example, rings of characteristic ≠2 and finite fields of characteristic ≥ 3. Rings with such a property is called reduced-over-idempotent. The study of reduced-over-idempotent rings is based on the fact that the characteristic is 2 and every nonzero non-identity element generates an infinite multiplicative semigroup without identity. It is proved that the reduced-over-idempotent property pass to polynomial rings, and we provide power series rings with a partial affirmative argument. It is also proved that every finitely generated subring of a locally finite reduced-over-idempotent ring is isomorphic to a finite direct product of copies of the prime field {0, 1}. A method to construct reduced-over-idempotent fields is also provided.

COMMUTATIVITY OF PRIME GAMMA NEAR RINGS WITH GENERALIZED DERIVATIONS

  • MARKOS, ADNEW;MIYAN, PHOOL;ALEMAYEHU, GETINET
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.915-923
    • /
    • 2022
  • The purpose of the present paper is to obtain commutativity of prime Γ-near-ring N with generalized derivations F and G with associated derivations d and h respectively satisfying one of the following conditions:(i) G([x, y]α = ±f(y)α(xoy)βγg(y), (ii) F(x)βG(y) = G(y)βF(x), for all x, y ∈ N, β ∈ Γ (iii) F(u)βG(v) = G(v)βF(u), for all u ∈ U, v ∈ V, β ∈ Γ,(iv) if 0 ≠ F(a) ∈ Z(N) for some a ∈ V such that F(x)αG(y) = G(y)αF(x) for all x ∈ V and y ∈ U, α ∈ Γ.

A STUDY ON INVARIANT REGIONS, EXISTENCE AND UNIQUENESS OF THE GLOBAL SOLUTION FOR TRIDIAGONAL REACTION-DIFFUSION SYSTEMS

  • IQBAL M. BATIHA;NABILA BARROUK;ADEL OUANNAS;ABDULKARIM FARAH
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.4
    • /
    • pp.893-906
    • /
    • 2023
  • In this article, we are devoted to study the problem of the existence, uniqueness and positivity of the global solutions of the 3 × 3 reaction-diffusion systems with the total mass of the components with time. We also suppose that the nonlinear reaction term has a critical growth with respect to the gradient. The technique that we used to prove the global existence is the method of the compact semigroup.

ANTI-HYBRID INTERIOR IDEALS IN ORDERED SEMIGROUPS

  • LINESAWAT, KRITTIKA;LEKKOKSUNG, SOMSAK;LEKKOKSUNG, NAREUPANAT
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.769-784
    • /
    • 2022
  • The main theme of this present paper is to study ordered semigroups in the context of anti-hybrid interior ideals. The notion of anti-hybrid interior ideals in ordered semigroups is introduced. We prove that the concepts of ideals and interior coincide in some particular classes of ordered semigroups; regular, intra-regular, and semisimple. Finally, the characterization of semisimple ordered semigroups in terms of anti-hybrid interior ideals is considered.

A Study on the Realiation of Logical function by flexible Logical Cells (가변논리소자에 의한 논리함수의 실현에 관한 연구)

  • 임재탁
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.11 no.4
    • /
    • pp.1.1-11
    • /
    • 1974
  • A general and systematic method of organizing two-dimensional flexible cellular array which is capable of reclizing arbitrary combinational switching function is developed. A set of n functions of n variables is transformed to revalued functions of one variable. This set of functions form a semigroup under the normal operation which is defined in this paper. A systematic method of generating any functions using three base functions is presented. Three basic networks which are capable of realizing three base functions are designed using only one one-dimensional array. The algorithm is presented for lealizing arbitrary combinational switching functions by organizing this basic array in two.dimensional cellular array and by appropriately setting the parameters or the edge of the array.

  • PDF

C(S) extensions of S-I-BCK-algebras

  • Zhaomu Chen;Yisheng Huang;Roh, Eun-Hwan
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.3
    • /
    • pp.499-518
    • /
    • 1995
  • In this paper we consider more systematically the centralizer C(S) of the set $S = {f_a $\mid$ f_a : X \to X ; x \longmapsto x * a, a \in X}$ with respect to the semigroup End(X) of all endomorphisms of an implicative BCK-algebra X with the condition (S). We obtain a series of interesting results. The main results are stated as follows : (1) C(S) with repect to a binary operation * defined in a certain way forms a bounded implicative BCK-algebra with the condition (S). (2) X can be imbedded in C(S) such that X is an ideal of C(S)/ (3) If X is not bounded, it can be imbedded in a bounded subalgebra T of C(S) such that X is a maximal ideal of T. (4) If $X (\neq {0})$ is semisimple, C(S) is BCK-isomorphic to $\prod_{i \in I}{A_i}$ in which ${A_i}_{i \in I}$ is simple ideal family of X.

  • PDF

Lp-Boundedness for the Littlewood-Paley g-Function Connected with the Riemann-Liouville Operator

  • Rachdi, Lakhdar Tannech;Amri, Besma;Chettaoui, Chirine
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.1
    • /
    • pp.185-220
    • /
    • 2016
  • We study the Gauss and Poisson semigroups connected with the Riemann-Liouville operator defined on the half plane. Next, we establish a principle of maximum for the singular partial differential operator $${\Delta}_{\alpha}={\frac{{\partial}^2}{{\partial}r^2}+{\frac{2{\alpha}+1}{r}{\frac{\partial}{{\partial}r}}+{\frac{{\partial}^2}{{\partial}x^2}}+{\frac{{\partial}^2}{{\partial}t^2}}};\;(r,x,t){\in}]0,+{\infty}[{\times}{\mathbb{R}}{\times}]0,+{\infty}[$$. Later, we define the Littlewood-Paley g-function and using the principle of maximum, we prove that for every $p{\in}]1,+{\infty}[$, there exists a positive constant $C_p$ such that for every $f{\in}L^p(d{\nu}_{\alpha})$, $${\frac{1}{C_p}}{\parallel}f{\parallel}_{p,{\nu}_{\alpha}}{\leqslant}{\parallel}g(f){\parallel}_{p,{\nu}_{\alpha}}{\leqslant}C_p{\parallel}f{\parallel}_{p,{\nu}_{\alpha}}$$.

EXTREMELY MEASURABLE SUBALGEBRAS

  • Ayyaswamy, S.K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.7-10
    • /
    • 1985
  • For each a.mem.S and f.mem.m(S), denote by $l_{a}$ f(s)=f(as) for all s.mem.S. If A is a norm closed left translation invariant subalgebra of m(S) (i.e. $l_{a}$ f.mem.A whenever f.mem.A and a.mem.S) containing 1, the constant ont function on S and .phi..mem. $A^{*}$, the dual of A, then .phi. is a mean on A if .phi.(f).geq.0 for f.geq.0 and .phi.(1) = 1, .phi. is multiplicative if .phi. (fg)=.phi.(f).phi.(g) for all f, g.mem.A; .phi. is left invariant if .phi.(1sf)=.phi.(f) for all s.mem.S and f.mem.A. It is well known that the set of multiplicative means on m(S) is precisely .betha.S, the Stone-Cech compactification of S[7]. A subalgebra of m(S) is (extremely) left amenable, denoted by (ELA)LA if it is nom closed, left translation invariant containing contants and has a multiplicative left invariant mean (LIM). A semigroup S is (ELA) LA, if m(S) is (ELA)LA. A subset E.contnd.S is left thick (T. Mitchell, [4]) if for any finite subser F.contnd.S, there exists s.mem.S such that $F_{s}$ .contnd.E or equivalently, the family { $s^{-1}$ E : s.mem.S} has finite intersection property.y.

  • PDF