DOI QR코드

DOI QR Code

A STUDY ON INVARIANT REGIONS, EXISTENCE AND UNIQUENESS OF THE GLOBAL SOLUTION FOR TRIDIAGONAL REACTION-DIFFUSION SYSTEMS

  • IQBAL M. BATIHA (Department of Mathematics, Al Zaytoonah University of Jordan, Nonlinear Dynamics Research Center (NDRC), Ajman University) ;
  • NABILA BARROUK (Department of Mathematics and Informatics, Mohamed Cherif Messaadia University) ;
  • ADEL OUANNAS (Department of Mathematics and Computer Science, University of Larbi Ben M'hidi) ;
  • ABDULKARIM FARAH (Department of Mathematics, Isra University)
  • Received : 2023.02.19
  • Accepted : 2023.04.14
  • Published : 2023.07.30

Abstract

In this article, we are devoted to study the problem of the existence, uniqueness and positivity of the global solutions of the 3 × 3 reaction-diffusion systems with the total mass of the components with time. We also suppose that the nonlinear reaction term has a critical growth with respect to the gradient. The technique that we used to prove the global existence is the method of the compact semigroup.

Keywords

References

  1. Z. Chebana, T.-E. Oussaeif, A. Ouannas, I. Batiha, Solvability of Dirichlet problem for a fractional partial differential equation by using energy inequality and Faedo-Galerkin method, Innovative Journal of Mathematics 1 (2022), 34-44. https://doi.org/10.55059/ijm.2022.1.1/4
  2. I.M. Batiha, Solvability of the solution of superlinear hyperbolic Dirichlet problem, Int. J. Anal. Appl. 20 (2022), 62.
  3. M. Bezziou, Z. Dahmani, I. Jebril, M.M. Belhamiti, Solvability for a differential system of duffing type via Caputo-Hadamard approach, Applied Mathematics & Information Sciences 16 (2022), 341-352. https://doi.org/10.18576/amis/160222
  4. N.D. Alikakos, L p -bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations 4 (1979), 827-868. https://doi.org/10.1080/03605307908820113
  5. K. Masuda, On the global existence and asymptotic behavior of solution of reaction-diffusion equations, Hokkaido Math. J. 12 (1983), 360-370. https://doi.org/10.14492/hokmj/1470081012
  6. A. Haraux, A. Youkana, On a result of K. Masuda concerning reaction-diffusion equations, Tohoku Math. J. 40 (1988), 159-163.
  7. S. Kouachi, A. Youkana, Global existence for a class of reaction-diffusion systems, Bull. Polish. Acad. Sci. Math. 49 (2001).
  8. N. Alaa, I. Mounir, Global existence for reaction-diffusion systems with mass control and critical growth with respect to the gradient, J. Math. Anal. Appl. 253 (2001), 532-557. https://doi.org/10.1006/jmaa.2000.7163
  9. W. Bouarifi, N. Alaa, S. Mesbahi, Global existence of weak solutions for parabolic triangular reaction-diffusion systems applied to a climate model, Annals of the University of Craiova, Mathematics and Computer Science Series 42 (2015), 80-97.
  10. B. Rebiai, S. Benachour, Global classical solutions for reaction-diffusion systems with nonlinearities of exponential growth, J. Evol. Equ. 10 (2010), 511-527. https://doi.org/10.1007/s00028-010-0059-x
  11. A. Moumeni, N. Barrouk, Existence of global solutions for systems of reaction-diffusion with compact result, International Journal of Pure and Applied Mathematics 102 (2015), 169-186. https://doi.org/10.12732/ijpam.v102i2.1
  12. A. Moumeni, N. Barrouk, Triangular reaction-diffusion systems with compact result, Glob. J. Pure Appl. Math. 11 (2015), 4729-4747.
  13. A. Moumeni, M. Dehimi, Global existence's solution of a system of reaction diffusion, International Journal of Mathematical Archive 4 (2013), 122-129.
  14. A. Moumeni, M. Mebarki, Global existence of solution for reaction diffusion system with full matrix via the compactness, Glob. J. Pure Appl. Math. 12 (2016), 4913-4928.
  15. I.M. Batiha, A. Ouannas, R. Albadarneh, A.A. Al-Nana, S. Momani, Existence and uniqueness of solutions for generalized Sturm-Liouville and Langevin equations via Caputo-Hadamard fractional-order operator, Engineering Computations 39 (2022), 2581-2603. https://doi.org/10.1108/EC-07-2021-0393
  16. T.E. Oussaeif, B. Antara, A. Ouannas, I.M. Batiha, K.M. Saad, H. Jahanshahi, A.M. Aljuaid, A.A. Aly, Existence and uniqueness of the solution for an inverse problem of a fractional diffusion equation with integral condition, Journal of Function Spaces 2022 (2022), Article ID 7667370.
  17. I.M. Batiha, Z. Chebana, T.E. Oussaeif, A. Ouannas, I.H. Jebril, On a weak solution of a fractional-order temporal equation, Mathematics and Statistics 10 (2022), 1116-1120. https://doi.org/10.13189/ms.2022.100522
  18. N. Anakira, Z. Chebana, T.E. Oussaeif, I.M. Batiha, A. Ouannas, A study of a weak solution of a diffusion problem for a temporal fractional differential equation, Nonlinear Functional Analysis and Applications 27 (2022), 679-689. https://doi.org/10.22771/NFAA.2022.27.03.14
  19. S. Abdelmalek, Invariant regions and global existence of solutions for reaction-diffusion systems with a tridiagonal matrix of diffusion coefficients and nonhomogeneous boundary conditions, J. Appl. Math. 2007 (2007), 1-15.
  20. S. Kouachi, Existence of global solutions to reaction-diffusion systems via a Lyapunov functional, Electron. J. Diff. Equ. 68 (2001), 1-10.
  21. S. Bonafede, D. Schmitt, Triangular reaction-diffusion systems with integrable initial data, Nonlinear analysis 33 (1998), 785-801.  https://doi.org/10.1016/S0362-546X(98)00042-X