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Abstract. In this article, we are devoted to study the problem of the

existence, uniqueness and positivity of the global solutions of the 3 × 3

reaction-diffusion systems with the total mass of the components with time.
We also suppose that the nonlinear reaction term has a critical growth with

respect to the gradient. The technique that we used to prove the global

existence is the method of the compact semigroup.
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1. Introduction

In this article, we study the following mathematical model of the reaction-
diffusion system using our techniques that are based on invariant regions and
compact semigroup methods:

∂u
∂t − a∆u− b∆v = f (t, x, u, v, w,∇u,∇v,∇w) , in QT ,
∂v
∂t − c∆u− a∆v − b∆w = g (t, x, u, v, w,∇u,∇v,∇w) , in QT ,
∂w
∂t − c∆v − a∆w = h (t, x, u, v, w,∇u,∇v,∇w) , in QT ,
∂u
∂η = ∂v

∂η = ∂w
∂η = 0 or u = v = w = 0, in ΣT ,

u (0, x) = u0 (x) , v (0, x) = v0 (x) , w (0, x) = w0 (x) , in Ω.

(1)

where Ω is an open bounded domain of a class C1 in RN with a smooth boundary
∂Ω, QT = ]0, T [ × Ω, ΣT = ]0, T ] × ∂Ω, T > 0, and the Laplacian operator on
L1 (Ω) with Dirichlet or Neumann boundary conditions that are denoted by ∆
[1, 2, 3]. The constants a, b and c are positive constants satisfying the condition
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√
2a ≥ (b+ c), which reflects the parabolicity of the system and makes the

matrix of diffusion:

A =

 a b 0
c a b
0 c a

 ,

to be positive definite with observing that the eigenvalues λ1, λ2, and λ3 (λ1 <
λ2 < λ3) of its transposed are positive. In this regard of the 2 × 2 reaction-
diffusion systems with diagonal matrix, we find that Alikakos [4] studied the
global existence of the solutions for the semilinear system where:

f (u, v) = −g (u, v) = −uvσ, and 1 < σ <
n+ 2

n
.

Masuda [5] showed that the solutions exist globally to this system for every
σ > 1. Haraux and Youkana [6] generalized the results for the semilinearities
of f (u, v) = g (u, v) = −uΨ(v) . Recently Kouachi and Youkana [7] generalized
the method of Haraux and Youkana to the triangular case, i.e. when b = 0. In
[8, 9], the authors obtained a global existence of the solutions for the coupled
reaction-diffusion for the semilinear system with diagonal by ordering 2 and
m of the matrix of diffusion coefficients. Rebiai and Benachour [10] treated
the case of the system of the reaction-diffusion via the full matrix of diffusion
coefficients with nonlinearities of exponential growth. Our presented article is
based on the papers [11, 12, 13, 14, 15, 16, 17, 18]. In particular, we show the
global existence and uniqueness results for the reaction-diffusion system with
a tridiagonal matrix of diffusion coefficients coupled with critical growth with
respect to |∇U | (m = 3).

Our methods are based on compact semigroup methods and invariant areas.
Polynomial growth is intended to be the nonlinear response term. We truncate
system (1), then provide appropriate estimates and demonstrate the approxi-
mating problem’s convergence. Ultimately, by assuming that the starting data
is as the following area, we will outline the formulation of the key results and
submission:

Σ =
{
(u0, v0, w0) ∈ R3 such that

√
2µ |v0| ≤ u0 + µw0, and u0 ≤ µw0

}
, (2)

where µ = b
c such that{
f, g, h : ]0, T [× Ω× R3 × R3N → R are measurable,
f, g, h : R3 × R3N → R are locally Lipschitz continuous,

(3)

and

(
cf −

√
2bcg + bh

)(
t, x,−

√
2bc
c v − b

cw, v, w,−
√
2bc
c q2 − b

cq3, q2, q3

)
≥ 0

(−cf + bh)
(
t, x, u, v, c

bu, q1, q2,
c
bq1

)
≥ 0,(

cf +
√
2bcg + bh

)(
t, x,−

√
2bc
c v − b

cw, v, w,−
√
2bc
c q2 − b

cq3, q2, q3

)
≥ 0,

for all u, v, w ∈ Σ, q1, q2, q3 ∈ RN and for a.e. (t, x) ∈ QT ,
(4)
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with {
(cf ++3bh) (t, x, u, v, w, q1, q2, q3) ≤ C (cu (t, x) + 3bw (t, x)) ,
for all u, v, w ∈ Σ, q1, q2, q3 ∈ RN and for a.e. (t, x) ∈ QT .

(5)

In what follow, we list some lemmas that we will use in this article.

Lemma 1.1. Let Ω be an open bounded domain in Rn and X = L1 (Ω)∩H2 (Ω).
Then the operator B is m-dissipative in X and defined as follow: D (B) =

{
u ∈ X, u|∂Ω or ∂u

∂η

∣∣∣
∂Ω

= 0
}
,

Bu = ∆u, ∀u ∈ D (B) .

Lemma 1.2. Let S (t) be a semigroup generating by m-dissipative operator A in
the Banach space X, where F is locally Lipchitz function and u0 ∈ X represents
the initial data, then the following problem:

u ∈ C ([0, T ] , D (A)) ∩ C1 ([0, T ] , X) ,
du

dt
−Au = F (t, x, u,∇u) ,

u (0) = u0,

(6)

admits a unique solution u that verifies:

u (t) = S (t)u0 +

∫ t

0

S (t− τ)F (τ, ., u (τ) ,∇u (τ)) dτ, ∀t ∈ [0, T ] .

The following is how this paper is structured. The purpose of Section 2 is to
review certain fundamental concepts and facts that needed to diagonalize the
system. By examining the local existence, positivity and global existence of a
specific solution to the primary problem, Section 3 illustrates the key findings
of this work. Other key results are proven in Section 4, and the conclusion is
summarized in the last section.

2. Diagonalisation of the system (1)

In this section, we will discuss the diagonalization of system 1 by supposing
that the functions f , g and h are points into the region Σ on ∂Σ. Then for
any (u0, v0, w0) in Σ, the solution (u (t, .) , v (t, .) , w (t, .)) of problem (1) would
remain in Σ for any time. The proof of this infer follows from the same way that
used in [19, 20]. By multiplying (1)1 by c, (1)2 by

√
2bc and (1)3 by b, and then

by adding the first result to the third one and subtracting the second result, we
get (7)1. Finally by subtracting the first result from the third one, we get (7)2.
If we add all of the three results to each other, we get the following system (7)3:

∂u1

∂t − λ1∆u1 = f1 (t, x, u1, u2, u3,∇u1,∇u2,∇u3) in QT ,
∂u2

∂t − λ2∆u2 = f2 (t, x, u1, u2, u3,∇u1,∇u2,∇u3) in QT ,
∂u3

∂t − λ3∆u3 = f3 (t, x, u1, u2, u3,∇u1,∇u2,∇u3) in QT ,
∂u1

∂η = ∂u2

∂η = ∂u3

∂η = 0 or u1 = u2 = u3 = 0 in ΣT ,

u1 (0, x) = u1,0 (x) , u2 (0, x) = u2,0 (x) , u3 (0, x) = u3,0 (x) , in Ω,

(7)
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where  u1 (t, x) = cu (t, x)−
√
2bcv (t, x) + bw (t, x)

u2 (t, x) = −cu (t, x) + bw (t, x)

u3 (t, x) = cu (t, x) +
√
2bcv (t, x) + bw (t, x) ,

(8)

for any (t, x) in QT and

f1 (t, x, u1, u2, u3,∇u1,∇u2,∇u3) =
(
cf −

√
2bcg + bh

)
× (t, x, u, v, w,∇u,∇v,∇w)

f2 (t, x, u1, u2, u3,∇u1,∇u2,∇u3) = (−cf + bh) (t, x, u, v, w,∇u,∇v,∇w)

f3 (t, x, u1, u2, u3,∇u1,∇u2,∇u3) =
(
cf +

√
2bcg + bh

)
× (t, x, u, v, w,∇u,∇v,∇w) ,

for all (u, v, w) in Σ with  λ1 = a−
√
2bc,

λ2 = a,

λ3 = a+
√
2bc.

Suppose that the hypotheses (2)-(5) are satisfied, then problem (7) will be held
for the following hypotheses:

ui0 are positive functions in L1 (Ω) , for all 1 ≤ i ≤ 3. (9)

• For all 1 ≤ i ≤ 3, we have{
fi : ]0, T [× Ω× R3 × R3N → R are measurable.
fi : R3 × R3N → R are locally Lipschitz continuous.

(10)

• The positivity of the solution is ensured by
fi (ûi) ≥ 0, 1 ≤ i ≤ 3 where û1 = (t, x, 0, u2, u3, 0, p2, p3) ,
û2 = (t, x, u1, 0, u3, p1, 0, p3) , û3 = (t, x, u1, u2, 0, p1, p2, 0)

(U, p) ∈ (R+)
3 × R3N and for a.e. (t, x) ∈ QT ,

ui,0 ≥ 0, for all 1 ≤ i ≤ 3.

(11)

• It exists positive constant C independent of ui, i = 1, 3 such as:
3∑

i=1

fi(t, x,U, p) ≤ C
3∑

i=1

ui,

for all (U, p) ∈ (R+)
3 × R3N and a.e. (t, x) ∈ QT .

(12)

3. Approximating problem

In this section, we will study the local existence, positivity and global exis-
tence of a unique solution for problem (13). Define the functions un

i0
, i = 1, 3

for all n > 0. Then by using un
i0

= min (ui0 , n), it is clear that u
n
i0

verify (9), i.e.
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(un
i0

∈ L1 (Ω) , un
i0

≥ 0, ∀i = 1, 3). Now, with solution (u1n , u2n , u3n), consider
the following approximation of system (7):

∂u1n

∂t − λ1∆u1n = f1 (t, x, u1n , u2n , u3n ,∇u1n ,∇u2n ,∇u3n) in ]0, T [× Ω,
∂u2n

∂t − λ2∆u2n = f2 (t, x, u1n , u2n , u3n ,∇u1n ,∇u2n ,∇u3n) in ]0, T [× Ω,
∂u3n

∂t − λ3∆u3n = f3 (t, x, u1n , u2n , u3n ,∇u1n ,∇u2n ,∇u3n) in ]0, T [× Ω,
∂uin

∂η = 0, or uin = 0, i = 1, 3 on ]0, T [× ∂Ω,

uin (0, x) = un
i0
(x) ≥ 0, i = 1, 3 in Ω.

(13)

3.1. Local existence of a unique solution for problem (13). In this

subsection, we convert problem (13) in the Banach space X =
(
L1 (Ω)

)3
to an

abstract first order-system of the form:
∂ωn

∂t = Aωn + F (t, x, ωn,∇ωn) in [0, T ]× Ω,
∂ωn

∂η = 0 or ωn = 0 in [0, T ]× ∂Ω,

ωn (0, .) = ω0n (.) ∈ X in Ω.

(14)

Now, define ωn = (u1n , u2n , u3n)
t
, the operator A as A = diag (λ1∆, λ2∆, λ3∆) ,

where D (A) := {ωn ∈ X : ∆ωn ∈ X}, and the function F as F = (f1, f2, f3)
t.

Then the system under consideration have a critical growth with respect to |∇U |
and ω0n = (un

01 , u
n
02 , u

n
03)

t. Consequently, system (14) can be returned to the
shape of system (7), and thus if (u1n , u2n , u3n) is a solution of (14), then it
verifies the integral equations:

uin (t) = Si (t)u
n
i0

+

∫ t

0

Si (t− τ) fi (τ, u1n (τ) , u2n (τ) , u3n (τ) ,∇u1n (τ) ,∇u2n (τ) ,∇u3n (τ)) dτ

where Si (t) is the semigroup generated by the operator λi∆, for all i = 1, 3.

Theorem 3.1. For TM > 0, there exists a local unique solution ωn of (14) for
all t ∈ [0, TM ].

Proof. We know that Si (t) are semigroups of contraction and as F is locally
Lipschitz in ωn in the space X. So ∃TM > 0 and a local solution ωn of (14) on
[0, TM ]. □

3.2. Positivity of the unique solution for problem (13). In this subsection
and by using the next result, we obtain the positivity of uin , for all 1 ≤ i ≤ 3.

Lemma 3.2. Let (u1n , u2n , u3n) be the solution of problem (13) such that un
i0
(x)

≥ 0, for all i = 1, 3, ∀x ∈ Ω. Then, uin (t, x) ≥ 0, for all i = 1, 3, ∀ (t, x) ∈
(0, T )× Ω.

Proof. Let ūin = e−σtuin and σ > 0, then we have:

∂uin

∂t
= eσt

(
∂ūin

∂t
+ σūin

)
, for all 1 ≤ i ≤ 3.
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Consequently by problem (14) and for 1 ≤ i ≤ 3, we have ūin is a solution of
the system:

∂ū1n

∂t
+ σū1n − λ1∆ū1n = e−σtf1 (t, x, ū1n , ū2n , ū3n ,∇ū1n ,∇ū2n ,∇ū3n)

∂ū2n

∂t
+ σū2n − λ2∆ū2n = e−σtf2 (t, x, ū1n , ū2n , ū3n ,∇ū1n ,∇ū2n ,∇ū3n)

∂ū3n

∂t
+ σū3n − λ3∆ū3n = e−σtf3 (t, x, ū1n , ū2n , ū3n ,∇ū1n ,∇ū2n ,∇ū3n)

∂ūin

∂η
= 0 or ūin = 0 , 1 ≤ i ≤ 3, on ]0, T [× ∂Ω,

ūin (0, x) = un
i0
(x) ≥ 0 , 1 ≤ i ≤ 3 in Ω.

(15)
Let U0 = (t0, x0) be the minimum of ū1n on ]0, T [ × Ω. We will show that
ū1n (U0) ≥ 0 which will imply that ū1n ≥ 0 on ]0, T [ × Ω and then un ≥ 0 on
]0, T [×Ω. Suppose the contrary, namely ū1n (U0) < 0. By the properties of the
minimum, we can ensure that U0 ∈ ]0, T ]× Ω and

∂ū1n

∂t
(U0) = 0, ∇ū1n (U0) = 0, ∆ū1n (U0) ≥ 0 if 0 < t0 < T,

∂ū1n

∂t
(U0) ≤ 0, ∇ū1n (U0) = 0, ∆ū1n (U0) ≥ 0 if t0 = T.

Hence, the first equation in (15) yields to:

σū1n (U0) = −∂ū1n

∂t
(U0) + λ1∆ū1n (U0)

+ e−σt0f1 (U0, ū1n (U0) , ū2n (U0) , ū3n (U0) , 0,∇ū2n (U0) ,∇ū3n (U0))

≥ e−σt0f1 (U0, ū1n (U0) , ū2n (U0) , ū3n (U0) , 0,∇ū2n (U0) ,∇ū3n (U0)) .

Now, we use the structure of ū1n (U0) and hypothesis (11) to write:

f1 (U0, ū1n (U0) , ū2n (U0) , ū3n (U0) , 0,∇ū2n ,∇ū3n)

= f1 (U0, 0, ū2n (U0) , ū3n (U0) , 0,∇ū2n (U0) ,∇ū3n (U0)) ≥ 0.

This implies that ū1n (U0) ≥ 0, which is impossible by the hypotheses. Arguing
in the same way for the others component ūkn

, for all 2 ≤ k ≤ 3, we obtain the
positivity of uin , for all 1 ≤ i ≤ 3. □

3.3. Global existence of the unique solution for problem (13). The
following result will be provided in this part to demonstrate the existence of an
estimated solution to problem (13) in L1 (Ω) for every t ≥ 0. As a result, we can
then conclude that the solution (u1n , u2n , u3n) given by Theorem 3.1 is a global
solution.

Lemma 3.3. Let (u1n , u2n , u3n) be the solution of problem (13), then it exists
M (t), which depends only of t, such that for all 0 ≤ t ≤ TM , we have:∥∥∥∥∥

3∑
i=1

uin (t)

∥∥∥∥∥
L1(Ω)

≤ M (t) .
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Proof. By adding the equations of (13), we obtain:

∂

∂t

3∑
i=1

uin −
3∑

i=1

λi∆uin =

3∑
i=1

fi (t, x, u1n , u2n , u3n ,∇u1n ,∇u2n ,∇u3n) .

By taking into account (12), we have:

∂

∂t

3∑
i=1

uin −
3∑

i=1

λi∆uin ≤ C

3∑
i=1

uin .

By integrating on Ω, we can have:

∂

∂t

∫
Ω

3∑
i=1

uindx−
∫
Ω

3∑
i=1

λi∆uindx ≤ C

∫
Ω

3∑
i=1

uindx.

Now, applying the formula of Green yields:

∂

∂t

∫
Ω

3∑
i=1

uindx ≤ C

∫
Ω

3∑
i=1

uindx.

Consequently, we get:

∂

∂t

∫
Ω

3∑
i=1

uindx∫
Ω

3∑
i=1

uindx

≤ C.

By integrating on [0, t] , we find:

ln

∫
Ω

3∑
i=1

uindx

∣∣∣∣∣
t

0

≤ Ct,

which implies

ln

∫
Ω

3∑
i=1

uin (t) dx

∫
Ω

3∑
i=1

un
i0dx

≤ Ct.

This gives: ∫
Ω

3∑
i=1

uin (t) dx

∫
Ω

3∑
i=1

un
i0dx

≤ exp (Ct) .
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Then, we have: ∫
Ω

3∑
i=1

uin (t) dx ≤ exp (Ct)

∫
Ω

3∑
i=1

un
i0dx,

i.e. ∫
Ω

3∑
i=1

uin (t) dx ≤ exp (Ct)

∫
Ω

3∑
i=1

ui0dx, as if un
i0 ≤ ui0 .

Let us now put:

M (t) = exp (Ct)

∥∥∥∥∥
3∑

i=1

ui0

∥∥∥∥∥
L1(Ω)

,

As uin are positives, then we get:∥∥∥∥∥
3∑

i=1

uin (t)

∥∥∥∥∥
L1(Ω)

≤ M (t) , 0 ≤ t ≤ TM .

□

Lemma 3.4. For any solution (u1n , u2n , u3n) of (13), there exists a constant
K (t), which depends only of t, such that:∥∥∥∥∥

3∑
i=1

uin

∥∥∥∥∥
L1(QT )

≤ K (t)

∥∥∥∥∥
3∑

i=1

ui0

∥∥∥∥∥
L1(Ω)

.

Proof. To prove this lemma, we use the following results given in Bonafede and
Schmitt [21]). So, we introduce θ ∈ C∞

0 (QT ) such that θ ≥ 0 and a nonnegative
solution Φ ∈ C1,2 (QT ) of the following system:

−Φt − d∆Φ = θ on QT ,
∂Φ
∂η = 0 or Φ (t, .) = 0 on [0, T [× ∂Ω,

Φ (T, .) = 0 on Ω.

For all q ∈ ]1,∞[, q′ ∈ ]1,∞] such that:

q ≤ q′ and 2−
(
1

q
− 1

q′

)
(n+ 2) > 0,

there exists a non-negative constant C, independent of θ, such that:

∥Φ∥Lq′ (QT ) ≤ C ∥θ∥Lq(QT ) . (16)

According to Bonafede and Schmitt [21], we have:∫
QT

Si (t)u
n
i0 (x)

(
−∂Φ

∂t
− d∆Φ

)
dxdt =

∫
Ω

un
i0 (x) Φ (0, x) dx,
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and ∫
QT

(∫ t

0

Si (t− τ) fi (τ, u1n , u2n , u3n ,∇u1n ,∇u2n ,∇u3n) dτ

)
×
(
−∂Φ

∂t
− d∆Φ

)
dxdt

=

∫
QT

fi (τ, u1n , u2n , u3n ,∇u1n ,∇u2n ,∇u3n) Φ (τ, x) dxdτ,

where ∫
QT

(
Si (t)u

n
i0 (x)

)
θdxdt =

∫
Ω

un
i0 (x) Φ (0, x) dx, (17)

and ∫
QT

(∫ t

0

Si (t− τ) fi (τ, ., u1n , u2n , u3n ,∇u1n ,∇u2n ,∇u3n) dτ

)
θdxdt

=

∫
QT

fi (τ, u1n , u2n , u3n ,∇u1n ,∇u2n ,∇u3n) Φ (τ, x) dxdτ.

By multiply the equation of (3.1) by θ, integrating the result on QT , and then
by using (17) and (3.3), we obtain:∫

QT

uinθdxdt =

∫
QT

Si (t)u
n
i0 (x) θdxdt

+

∫
QT

(∫ t

0

Si (t− τ) fi (τ, ., u1n , u2n , u3n ,∇u1n ,∇u2n ,∇u3n) dτ

)
θdxdt,

=

∫
Ω

un
i0 (x) Φ (0, x) dx

+

∫
QT

fi (τ, ., u1n , u2n , u3n ,∇u1n ,∇u2n ,∇u3n) Φ (τ, x) dxdτ, i = 1, 3.

Therefore, we can have∫
QT

3∑
i=1

uinθdxdt =

∫
Ω

3∑
i=1

un
i0 (x) Φ (0, x) dx

+

∫
QT

3∑
i=1

fi (τ, ., u1n , u2n , u3n ,∇u1n ,∇u2n ,∇u3n) Φ (τ, x) dxdτ.

According to (12) and as un
i0

≤ ui0 , we can have:∫
QT

3∑
i=1

uinθdxdt ≤
∫

Ω

3∑
i=1

ui0 (x) Φ (0, x) dx+

∫
QT

C

3∑
i=1

uinΦ (τ, x) dxdτ.



902 Iqbal M. Batiha, Nabila Barrouk, Adel Ouannas, Abdulkarim Farah

By using Hölder inequality, we can deduce:∫
QT

3∑
i=1

uinθdxdt

≤

∥∥∥∥∥
3∑

i=1

ui0

∥∥∥∥∥
L1(Ω)

. ∥Φ (0, .)∥L∞(QT ) + C

∥∥∥∥∥
3∑

i=1

uin

∥∥∥∥∥
L1(QT )

. ∥Φ∥L∞(QT )

≤

∥∥∥∥∥
3∑

i=1

ui0

∥∥∥∥∥
L1(Ω)

+ C

∥∥∥∥∥
3∑

i=1

uin

∥∥∥∥∥
L1(QT )

 . ∥Φ∥L∞(QT )

≤ max (1, C)

∥∥∥∥∥
3∑

i=1

ui0

∥∥∥∥∥
L1(Ω)

+

∥∥∥∥∥
3∑

i=1

uin

∥∥∥∥∥
L1(QT )

 . ∥Φ∥L∞(QT ) .

Also, using (16) yields:∫
QT

3∑
i=1

uinθdxdt ≤ k1 (t)

∥∥∥∥∥
3∑

i=1

ui0

∥∥∥∥∥
L1(Ω)

+

∥∥∥∥∥
3∑

i=1

uin

∥∥∥∥∥
L1(QT )

 . ∥θ∥L∞(QT ) ,

where k1 (t) ≥ max (c, cC). Since θ is arbitrary in C∞
0 (QT ), then we have:∥∥∥∥∥

3∑
i=1

uin

∥∥∥∥∥
L1(QT )

≤ k1 (t)

∥∥∥∥∥
3∑

i=1

ui0

∥∥∥∥∥
L1(Ω)

+

∥∥∥∥∥
3∑

i=1

uin

∥∥∥∥∥
L1(QT )

 .

Now, by taking k (t) = k1(t)
1−k1(t)

, we find:∥∥∥∥∥
3∑

i=1

uin

∥∥∥∥∥
L1(QT )

≤ k (t)

∥∥∥∥∥
3∑

i=1

ui0

∥∥∥∥∥
L1(Ω)

.

□

4. Proof of the main result

In this section, we will present the main result (Theorem 4.1), and proof it to
show the statement of the result for this paper.

Theorem 4.1. Assume that the hypotheses (9)-(12) are satisfied. Then, there
exists a unique solution ui, i = 1, 3 of system (7) in the sense of

ui ∈ C
(
[0, T ] , L1 (Ω)

)
∩ L1

(
0, T, w1,1

0 (Ω)
)
, i = 1, 3,

fi (t, x, ω,∇ω) ∈ L1 (QT ) for all T > 0,

ui (t) = Si (t)ui0 +
∫ t

0
Si (t− τ) fi (τ, ω (τ) ,∇ω (τ)) dτ, i = 1, 3,∀t ∈ [0, T [ ,

(18)
where ω = (u1, u2, u3) and Si (t) are the semigroups of contractions in L1 (Ω)
generated by λi∆, i = 1, 3.
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Proof. Let S (t) be a compact semigroup of contraction engendered by the op-
erator d∆. Define the application L by:

L : (w0, h) → S (t)w0 +

∫ t

0

S (t− τ)h (τ, ., w (τ) ,∇w (τ)) dτ.

The application L is compact L1 (QT )×L1 (QT ) in L1 (QT ) because it is adding
two compact applications in L1 (QT ), see the result in [11, 12, 13, 14]. There-

fore, there is a subsequence
(
uj
1n
, uj

2n
, uj

3n

)
of (u1n , u2n , u3n) and (u1, u2, u3) of(

L1 (QT )
)3

such that
(
uj
1n
, uj

2n
, uj

3n

)
converges towards (u1, u2, u3). Let us now

show that
(
uj
1n
, uj

2n
, uj

3n

)
is a solution of (3.1). We have:

uj
in
(t, x) = Si (t)u

j
i0
+

∫ t

0

Si (t− τ) fi

(
τ, ., uj

1n
, uj

2n
, uj

3n
,∇uj

1n
,∇uj

2n
,∇uj

3n

)
dτ,

(19)
for i = 1, 3. So it is enough to show that (u1, u2, u3) verifies (18). To this aim,
we should first notice that if j → +∞, we have the following limits:{

fi

(
τ, ., uj

1n
, uj

2n
, uj

3n
,∇uj

1n
,∇uj

2n
,∇uj

3n

)
→ fi (τ, ., u1, u2, u3,∇u1,∇u2,∇u3)

a.e, i = 1, 3,
(20)

and

uj
i0

→ ui0 , i = 1, 3.

Thus, to show that (u1, u2, u3) verifies (18), it remains to show that:{
fi

(
τ, ., uj

1n
, uj

2n
, uj

3n
,∇uj

1n
,∇uj

2n
,∇uj

3n

)
→ fi (τ, ., u1, u2, u3,∇u1,∇u2,∇u3)

i = 1, 3, in L1 (QT ) when j → +∞.

We integrate the equations of (13) on QT by taking into account that:

−λi

∫
QT

∆uj
in
dxdt = 0, i = 1, 3.

Then, we have:∫
Ω

uj
in
dx−

∫
Ω

uj
i0
dx

=

∫
QT

fi

(
τ, ., uj

1n
(t) , uj

2n
(t) , uj

3n
(t) ,∇uj

1n
(t) ,∇uj

2n
(t) ,∇uj

3n
(t)

)
dxdτ,

where

−
∫

QT

fi

(
τ, ., uj

1n
(t) , uj

2n
(t) , uj

3n
(t) ,∇uj

1n
(t) ,∇uj

2n
(t) ,∇uj

3n
(t)

)
dxdτ

≤
∫

Ω

ui0dx, for i = 1, 3.

(21)
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Now, let us put

Υin = C

3∑
i=1

uj
in

− fi

(
t, ., uj

1n
(t) , uj

2n
(t) , uj

3n
(t) ,∇uj

1n
(t) ,∇uj

2n
(t) ,∇uj

3n
(t)

)
,

for i = 1, 3. It is clear that Υin is positives. Now, according to (12) of (21), we
obtain: ∫

QT

Υindxdτ ≤ C

∫
QT

3∑
i=1

uj
in
dxdτ +

∫
Ω

ui0dx.

Thus, Lemma 3.4 gives us: ∫
QT

Υindxdτ < +∞,

which implies:∫
QT

∣∣∣fi (τ, ., uj
1n

(t) , uj
2n

(t) , uj
3n

(t) ,∇uj
1n

(t) ,∇uj
2n

(t) ,∇uj
3n

(t)
)∣∣∣ dxdτ

≤ C

∫
QT

3∑
i=1

uj
in
dxdτ +

∫
QT

Υindxdτ < +∞.

Now, let

Ψin = Υin + C

3∑
i=1

uj
in
, i = 1, 3,

then Ψin are positives in L1 (QT ) and furthermore we have:∣∣∣fi (t, ., uj
1n

(t) , uj
2n

(t) , uj
3n

(t) ,∇uj
1n

(t) ,∇uj
2n

(t) ,∇uj
3n

(t)
)∣∣∣ ≤ Ψin a.e,

for i = 1, 3. Let us combine this result with (20), then by dominated convergence,
we obtain:

fi

(
t, ., uj

1n
, uj

2n
, uj

3n
,∇uj

1n
,∇uj

2n
,∇uj

3n

)
→ fi (t, ., u1, u2, u3,∇u1,∇u2,∇u3)

in L1 (QT ). By passing in the limit j → +∞ of (19) in L1 (QT ), we find:

ui (t) = Si (t)ui0 +

∫ t

0

Si (t− τ) fi (τ, ., u1, u2, u3,∇u1,∇u2,∇u3) dτ, i = 1, 3.

Then (u1, u2, u3) verify (18), and consequently (u1, u2, u3) is the solution of (7).
Hence, we conclude by (8) that there exists a unique global solution to the system
(1). □
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Example 4.2. The result of system (7) can be applied to the following typical
example:

∂ui

∂t
− di∆ui =

∑
1≤j≤i

aij
uj∑

1≤k≤3

uk
|∇uj |2 + fi(t, x) in QT

∂ui

∂η or ui = 0 on ΣT

ui(0, x) = ui,0 (x) in Ω

, for 1 ≤ i ≤ 3

5. Conclusion

With the use of utilizing the compact semigroup and invariant areas tech-
niques, this article has examined and studied invariant areas for tridiagonal
reaction-diffusion systems as well as the possibility of singular global solutions.

Conflicts of interest : The authors declare no conflict of interest.

Data availability : Not applicable

Acknowledgments : The authors received no direct funding for this research
paper.

References

1. Z. Chebana, T.-E. Oussaeif, A. Ouannas, I. Batiha, Solvability of Dirichlet problem for

a fractional partial differential equation by using energy inequality and Faedo-Galerkin

method, Innovative Journal of Mathematics 1 (2022), 34–44.
2. I.M. Batiha, Solvability of the solution of superlinear hyperbolic Dirichlet problem, Int. J.

Anal. Appl. 20 (2022), 62.

3. M. Bezziou, Z. Dahmani, I. Jebril, M.M. Belhamiti, Solvability for a differential system of
duffing type via Caputo-Hadamard approach, Applied Mathematics & Information Sciences

16 (2022), 341-352.

4. N.D. Alikakos, Lp-bounds of solutions of reaction-diffusion equations, Comm. Partial Dif-
ferential Equations 4 (1979), 827-868.

5. K. Masuda, On the global existence and asymptotic behavior of solution of reaction-diffusion
equations, Hokkaido Math. J. 12 (1983), 360-370.

6. A. Haraux, A. Youkana, On a result of K. Masuda concerning reaction-diffusion equations,

Tohoku Math. J. 40 (1988), 159-163.
7. S. Kouachi, A. Youkana, Global existence for a class of reaction-diffusion systems, Bull.

Polish. Acad. Sci. Math. 49 (2001).
8. N. Alaa, I. Mounir, Global existence for reaction-diffusion systems with mass control and

critical growth with respect to the gradient, J. Math. Anal. Appl. 253 (2001), 532-557.

9. W. Bouarifi, N. Alaa, S. Mesbahi, Global existence of weak solutions for parabolic triangular

reaction-diffusion systems applied to a climate model, Annals of the University of Craiova,
Mathematics and Computer Science Series 42 (2015), 80-97.

10. B. Rebiai, S. Benachour, Global classical solutions for reaction-diffusion systems with
nonlinearities of exponential growth, J. Evol. Equ. 10 (2010), 511-527.

11. A. Moumeni, N. Barrouk, Existence of global solutions for systems of reaction-diffusion

with compact result, International Journal of Pure and Applied Mathematics 102 (2015),
169-186.



906 Iqbal M. Batiha, Nabila Barrouk, Adel Ouannas, Abdulkarim Farah

12. A. Moumeni, N. Barrouk, Triangular reaction-diffusion systems with compact result, Glob.

J. Pure Appl. Math. 11 (2015), 4729-4747.
13. A. Moumeni, M. Dehimi, Global existence’s solution of a system of reaction diffusion,

International Journal of Mathematical Archive 4 (2013), 122-129.

14. A. Moumeni, M. Mebarki, Global existence of solution for reaction diffusion system with
full matrix via the compactness, Glob. J. Pure Appl. Math. 12 (2016), 4913-4928.

15. I.M. Batiha, A. Ouannas, R. Albadarneh, A.A. Al-Nana, S. Momani, Existence and

uniqueness of solutions for generalized Sturm–Liouville and Langevin equations via Ca-
puto–Hadamard fractional-order operator, Engineering Computations 39 (2022), 2581-2603.

16. T.E. Oussaeif, B. Antara, A. Ouannas, I.M. Batiha, K.M. Saad, H. Jahanshahi, A.M.

Aljuaid, A.A. Aly, Existence and uniqueness of the solution for an inverse problem of
a fractional diffusion equation with integral condition, Journal of Function Spaces 2022

(2022), Article ID 7667370.
17. I.M. Batiha, Z. Chebana, T.E. Oussaeif, A. Ouannas, I.H. Jebril, On a weak solution of a

fractional-order temporal equation, Mathematics and Statistics 10 (2022), 1116-1120.

18. N. Anakira, Z. Chebana, T.E. Oussaeif, I.M. Batiha, A. Ouannas, A study of a weak
solution of a diffusion problem for a temporal fractional differential equation, Nonlinear

Functional Analysis and Applications 27 (2022), 679-689.

19. S. Abdelmalek, Invariant regions and global existence of solutions for reaction-diffusion
systems with a tridiagonal matrix of diffusion coefficients and nonhomogeneous boundary

conditions, J. Appl. Math. 2007 (2007), 1-15.

20. S. Kouachi, Existence of global solutions to reaction-diffusion systems via a Lyapunov
functional, Electron. J. Diff. Equ. 68 (2001), 1-10.

21. S. Bonafede, D. Schmitt, Triangular reaction-diffusion systems with integrable initial data,

Nonlinear analysis 33 (1998), 785-801.

Iqbal M. Batiha received M.Sc. in Mathematics from Al al-Bayt University University

and Ph.D. from the University of Jordan. His research interests include computational
mathematics, iterative method and numerical optimization.

1Department of Mathematics, Al Zaytoonah University of Jordan, Amman 11733, Jordan.
2Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, UAE.

e-mail: i.batiha@zuj.edu.jo

Nabila Barrouk received M.Sc. and Ph.D. from Mohamed Cherif Messaadia University.

Her research interests include applied mathematics, mathematical modelling, applied and

computational mathematics.

Department of Mathematics and Informatics, Mohamed Cherif Messaadia University, Souk

Ahras 41000, Algeria.

e-mail: n.barrouk@univ-soukahras.dz

Adel Ouannas received M.Sc. and Ph.D. from University of Constantine. His research

interests include nonlinear dynamics, bifurcation, analysis, chaos theory, synchronization
and control.

Department of Mathematics and Computer Science, University of Larbi Ben M’hidi, Oum

El Bouaghi, Algeria.
e-mail: dr.ouannas@gmail.com

Abdulkarim Farah received M.Sc. and Ph.D. from Kiev Government University. His re-
search interests include pure mathematics, statistics, probability and mathematical analysis.

Department of Mathematics, Isra University, Amman, Jordan.
e-mail: karim.farah@iu.edu.jo




