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REDUCED PROPERTY OVER IDEMPOTENTS

Tai Keun Kwak†, Yang Lee, and Young Joo Seo∗

Abstract. This article concerns the property that for any element a in a ring, if
a2n = an for some n ≥ 2 then a2 = a. The class of rings with this property is
large, but there also exist many kinds of rings without that, for example, rings of
characteristic 6= 2 and finite fields of characteristic ≥ 3. Rings with such a property
is called reduced-over-idempotent. The study of reduced-over-idempotent rings is
based on the fact that the characteristic is 2 and every nonzero non-identity element
generates an infinite multiplicative semigroup without identity. It is proved that the
reduced-over-idempotent property pass to polynomial rings, and we provide power
series rings with a partial affirmative argument. It is also proved that every finitely
generated subring of a locally finite reduced-over-idempotent ring is isomorphic to
a finite direct product of copies of the prime field {0, 1}. A method to construct
reduced-over-idempotent fields is also provided.

1. Reduced-over-idempotent rings

Throughout this note every ring is an associative ring with identity unless oth-
erwise stated. A nilpotent element is also said to be a nilpotent for short. Let R be
a ring. We denote the center, the set of all nilpotents, the set of all idempotents, the
group of all units, and the Jacobson radical of R by Z(R), N(R), Id(R), U(R), and
J(R), respectively. The polynomial (resp., power series) ring with an indeterminate x
over R is denoted by R[x] (resp., R[[x]]). Z (Zn) denotes the ring of integers (modulo
n). The characteristic of R is written by Ch(R). Let a ∈ R. The right (resp., left)
annihilator of a in R is denoted by rR(a) (resp., lR(a)). a is called right (resp., left)
regular if rR(a) = 0 (resp., lR(a) = 0); and a is called regular if a is both right and
left regular. For S ⊆ R, |S| denotes the cardinality of S. Denote the n by n (n ≥ 2)
full (resp., upper triangular) matrix ring over R by Matn(R) (resp., Tn(R)). Write
Dn(R) = {(aij) ∈ Tn(R) | a11 = · · · = ann}.

A ring is usually called reduced if it has no nonzero nilpotents. It is easily proved
that a ring R is reduced if and only if a2 = 0 for a ∈ R implies a = 0. A ring is
usually called Abelian if every idempotent is central. Reduced rings are easily shown
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to be Abelian, but there exist many non-reduced rings which are Abelian (e.g., D2(R)
over a commutative ring R).

Recall that a ring is called locally finite [8] if every finite subset in it generates a
finite semigroup multiplicatively. It is obvious that every locally finite ring is of finite
characteristic. It is obtained by [7, Theorem 2.2(1)] that a ring is locally finite if and
only if every subring generated by a finite subset is finite. Finite rings are clearly
locally finite, and an algebraic closure of a finite field is locally finite but not finite.
Note that if a ring R is locally finite, then for any r ∈ R there exists n = n(r) ≥ 1
such that rn ∈ Id(R) (see the proof of [8, Proposition 16]). Here, r need not be an
idempotent. It is clear that for any ring A and a ∈ A, a ∈ Id(A) implies ak ∈ Id(A)
for all k ≥ 1.

Based on these facts, we introduce a new ring property.

Definition 1.1. A ring R is said to be reduced-over-idempotent provided that for
any a ∈ R, an ∈ Id(R) for some n ≥ 1 implies a ∈ Id(R).

The following consists of basic properties of reduced-over-idempotent rings which
are essential for our study.

Lemma 1.2. For a reduced-over-idempotent ring R, we have the following asser-
tions.

(1) R is reduced.
(2) Ch(R) = 2 and then R is an algebra over Z2.
(3) Every non-identity regular element in R forms an infinite multiplicative semi-

group without identity.
(4) If R is locally finite, then R is Boolean.
(5) If R is locally finite, then U(R) = {1}.

Proof. (1) Let a2 = 0 for a ∈ R. Then a ∈ Id(R) since R is reduced-over-
idempotent, so that a = a2 = 0. Thus R is reduced.

(2) Since R is reduced-over-idempotent, (−1)2 = 1 implies −1 ∈ Id(R), so that
−1 = (−1)2 = 1. Thus Ch(R) = 2.

(3) Let a be a non-identity regular element in R. Consider the multiplicative
semigroup S = {an | n ≥ 1} generated by a. Assume ak1 = ak2 for some k1 6= k2.
Then ah = 1 for some h ≥ 1 since a is regular. Here, since R is reduced-over-
idempotent, we get a ∈ Id(R) and hence the regularity of a implies a = 1, contrary
to a 6= 1. Therefore S is an infinite multiplicative semigroup without identity.

(4) and (5) Let R be locally finite. Then, for any a ∈ R, there exists m ≥ 1 such
that am ∈ Id(R) by the proof of [8, Proposition 16]. Thus a ∈ Id(R) because R is
reduced-over-idempotent, showing that R is Boolean.

Next, for u ∈ U(R), we must get u = 1 by the preceding argument, as desired.

The class of reduced-over-idempotent rings is seated between Boolean rings and
reduced rings by Lemma 1.2(1, 4). From Lemma 1.2(3), we obtain an equivalent
condition of reduced-over-idempotent domains.

Theorem 1.3. (1) Let R be a domain. Then R is reduced-over-idempotent if and
only if every non-identity regular element forms an infinite multiplicative semigroup
without identity.

(2) Every free algebra over Z2 is reduced-over-idempotent.
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(3) Let R be a locally finite reduced-over-idempotent ring. Then every finitely
generated subring of R is isomorphic to a finite direct product of copies of Z2.

Proof. (1) It suffices to show the sufficiency by Lemma 1.2(3). Assume the necessity
and let 0 6= a ∈ R such that an ∈ Id(R) for some n ≥ 1. Then an = 1 since R is
a domain, so that we must have a = 1 by assumption. Thus R is reduced-over-
idempotent.

(2) Let R be a free algebra over Z2. Then R is a domain such that U(R) = {1} and
every non-identity regular element forms an infinite multiplicative semigroup without
identity. So R is reduced-over-idempotent by (1).

(3) Let S be a finitely generated subring of R. Then S is finite since R is locally
finite, and hence S is isomorphic to a finite direct product of Matni

(Fi)’s for some
finite fields Fi and positive integers ni by the Wedderburn-Artin theorem. Moreover
S is also reduced-over-idempotent by Proposition 1.5(1) below, and then S is reduced
by Lemma 1.2(1). From this we see that S is isomorphic to a finite direct product
of Fi’s. But every Fi must coincide with Z2 by Lemma 1.2(5), and therefore S is
isomorphic to a finite direct product of copies of Z2.

The arguments below elaborate upon Lemma 1.2 and Theorem 1.3.

Remark 1.4. (1) Fields need not be reduced-over-idempotent. For example, con-
sider the field C of complex numbers. Then C is not reduced-over-idempotent by
Lemma 1.2(2), since Ch(C) = 0. Moreover, it implies that every subring of C cannot
be reduced-over-idempotent.

Assume that a field F is reduced-over-idempotent. If F is finite, then F ∼= Z2

by Lemma 1.2(4), so that every finite field E with |E| ≥ 3 cannot be reduced-over-
idempotent; for example, the Galois field GF (2k) with k ≥ 2.

(2) Let R = Z2〈X〉 be a free algebra generated by a set X over Z2. Then R is a
reduced-over-idempotent domain by Theorem 1.3(2). If |X| = 1, then R ∼= Z2[x]. If
|X| ≥ 2, then Z(R) = Z2 by the proof of [2, Proposition 1.3(7)].

(3) Note that Boolean rings are obviously reduced-over-idempotent but not con-
versely. Indeed, let R = Z2〈a, b〉 be the free algebra with noncommuting indetermi-
nates a, b over Z2. Then R is reduced-over-idempotent by Theorem 1.3(2), but R is
not Boolean clearly.

(4) Any of Matn(R), Tn(R) and Dn(R), over any ring R for n ≥ 2, cannot be
reduced-over-idempotent because they are not reduced.

The following properties of reduced-over-idempotent rings do basic roles throughout
this article.

Proposition 1.5. (1) The class of reduced-over-idempotent rings is closed under
subrings.

(2) For a family {Rγ | γ ∈ Γ} of rings, the following statements are equivalent:
(i) Rγ is reduced-over-idempotent;
(ii) The direct product

∏
γ∈ΓRγ of Rγ is reduced-over-idempotent;

(iii) The direct sum ⊕γ∈ΓRγ of Rγ is reduced-over-idempotent.
(3) Let R be an Abelian ring and e ∈ Id(R). Then R is reduced-over-idempotent

if and only if both eR and (1− e)R are reduced-over-idempotent.
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Proof. (1) Note that Id(S) = Id(R) ∩ S for any subring S of a ring R.
(2) The proof comes from (1) and the fact that Id(

∏
γ∈ΓRγ) =

∏
γ∈Γ Id(Rγ) and

Id(⊕γ∈ΓRγ) = ⊕γ∈ΓId(Rγ).
(3) This follows (2), since R ∼= eR⊕ (1− e)R.

Related to Proposition 1.5(1), one may ask whether the class of reduced-over-
idempotent rings is closed under homomorphic images. But the answer is negative
as follows. We use the construction in [1, Example 4.8]. Consider the reduced-over-
idempotent ring R = Z2〈a, b〉 as in Remark 1.4(3). Let J be the ideal of R generated
by b2 and r̄ = r + J for r ∈ R. Then R/J is not reduced-over-idempotent by Lemma
1.2(1) because it is not reduced; indeed, b̄2 = 0̄ but b̄ 6= 0̄.

On the other hand, there exists a ring whose nontrivial factor rings are reduced-
over-idempotent, but the ring is not reduced-over-idempotent. Consider the ring
R = T2(Z2) which is not reduced-over-idempotent by Remark 1.4(4). Note that Z2 is
obviously reduced-over-idempotent, and hence Z2×Z2 is also reduced-over-idempotent
by Proposition 1.5(2). All nontrivial factor rings of R are R/I ∼= Z2×Z2, R/J ∼= Z2,

and R/K ∼= Z2; hence these are reduced-over-idempotent, where I =

(
0 Z2

0 0

)
, J =(

Z2 Z2

0 0

)
, and K =

(
0 Z2

0 Z2

)
.

A ring R is called a subdirect product of a family of rings {Rγ | γ ∈ Γ} if there is
a monomorphism f : R →

∏
γ∈ΓRγ such that πγ ◦ f is onto for all γ ∈ Γ, where πγ :∏

γ∈ΓRγ → Rγ is the canonical epimorphism. The following is another application of

Proposition 1.5(2).

Proposition 1.6. A subdirect product of reduced-over-idempotent rings is reduced-
over-idempotent.

Proof. Let R be a subdirect product of a family {Rγ | γ ∈ Γ} of reduced-over-
idempotent rings. Then f(Id(R)) ⊆ Id(

∏
γ∈ΓRγ) =

∏
γ∈Γ Id(Rγ) clearly. Suppose

that for a ∈ R there exists n ≥ 1 such that an ∈ Id(R). Then f(a)n = f(an) ∈
Id(
∏

γ∈ΓRγ). Since every Rγ is reversible-over-idempotent,
∏

γ∈ΓRγ is reversible-

over-idempotent by Proposition 1.5(2). So f(a)n ∈ Id(
∏

γ∈ΓRγ) implies f(a) ∈
Id(
∏

γ∈ΓRγ). There exists eγ ∈ Id(Rγ) for each γ ∈ Γ such that f(a) = (eγ)γ∈Γ.

Then f(a2) = (f(a))2 = [(eγ)γ∈Γ]2 = (eγ)γ∈Γ = f(a) and hence a2 = a, since f is
injective. Thus a ∈ Id(R). Therefore R is reduced-over-idempotent.

Recall that a ring R is called local if R/J(R) is a division ring. A ring R is
called semilocal if R/J(R) is semisimple Artinian, and R is called semiperfect if R is
semilocal and idempotents can be lifted modulo J(R). One-sided Artinian rings are
clearly semiperfect. Local rings are Abelian and semilocal.

Proposition 1.7. A ring R is reduced-over-idempotent and semiperfect if and
only if R is a finite direct product of local reduced-over-idempotent rings.

Proof. Suppose that R is reduced-over-idempotent and semiperfect. Then R is
Abelian because R is reduced by Lemma 1.2(1). Since R is semiperfect, R has a finite
orthogonal set {e1, e2, . . . , en} of local idempotents whose sum is 1 by [12, Proposition
3.7.2], say R =

∑n
i=1 eiR such that each eiRei is a local ring. Since R is Abelian, each
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eiR is an ideal of R with eiR = eiRei. But each eiR is also a reduced-over-idempotent
ring by Proposition 1.5(3).

Conversely assume thatR is a finite direct product of local reduced-over-idempotent
rings. Then R is Abelian and semiperfect since local rings are semiperfect by [12,
Corollary 3.7.1], and moreover R is reduced-over-idempotent by Proposition 1.5(2).

We see an application of Proposition 1.7.

Corollary 1.8. Let R be a reduced-over-idempotent ring. If R is right Artinian
then R is a finite direct product of division rings.

Proof. Let R be right Artinian. Then J(R) is nilpotent, and hence J(R) = 0
because R is reduced by Lemma 1.2(1). Moreover R is a finite direct product of local
reduced-over-idempotent rings by Proposition 1.7, R =

∑n
i=1Ri. Note J(Ri) = 0 since

Ri is right Artinian and Ri is reduced. This implies that there exist a finite number
of division rings Di’s such that R is isomorphic to the direct product of Di’s.

Corollary 1.8 can be obtained also by using the Wedderburn-Artin theorem.

2. Extensions

In this section, we study the reduced-over-idempotent ring property of sev-
eral kinds of extensions, concentrating on polynomial rings and power series rings.
R[x;x−1] means the Laurent polynomial ring with an indeterminate x over a ring R.

Lemma 2.1. (1) [10, Lemma 8] For an Abelian ring R, we have that Id(R) =
Id(R[x]) = Id(R[[x]]) and that both R[x] and R[[x]] are Abelian.

(2) Let R be a reduced ring. Then Id(R[x;x−1]) = Id(R).

Proof. (2) Let f(x) ∈ Id(R[x;x−1]) for 0 6= f(x) =
∑n

i=m aix
i ∈ R[x;x−1], where

m ∈ Z, am 6= 0 and an ≥ 0. If m ≤ −1 then a2
m 6= 0 implies f(x)2 = a2

mx
−2m + · · · 6=

f(x), entailing m ≥ 0. Next if n ≥ 1 then a2
n 6= 0 implies f(x)2 = · · ·+ a2

nx
2n 6= f(x),

entailing n = 0. Consequently f(x) = a0 and a2
0 = a0 follows.

The preceding lemma does an essential role in the proposition and remark below.

Proposition 2.2. For a ring R, the following conditions are equivalent:
(1) R is reduced-over-idempotent;
(2) R[x] is reduced-over-idempotent;
(3) R[x;x−1] is reduced-over-idempotent.

Proof. It suffices to show (1) ⇒ (3) by Proposition 1.5(1). Let R be reduced-over-
idempotent. Then R is reduced by Lemma 1.2(1). Suppose that f(x)k ∈ Id(R[x;x−1])
for 0 6= f(x) =

∑n
i=m aix

i ∈ R[x;x−1] and k ≥ 1, where m ∈ Z. Then f(x)k = e for
some e ∈ Id(R) by Lemma 2.1(2). By the reducedness of R, we must get f(x) = a0.
This entails ak0 = e. But since R is reduced-over-idempotent, a0 ∈ Id(R) and a0 = e
follows. Thus R[x;x−1] is reduced-over-idempotent.

From Theorem 1.3(1) and Proposition 2.2, we can obtain reduced-over-idempotent
fields. For example, let F = Z2(x), the quotient field of Z2[x], a reduced-over-
idempotent domain by Proposition 2.2. Taking f ∈ E such that f 6= 1 and f 6= 0, we
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have that {fn | n ≥ 1} is an infinite multiplicative semigroup without identity. Thus
E is reduced-over-idempotent by Theorem 1.3(1).

Considering the preceding proposition, one may ask whether the reduced-over-
idempotent property also go up to power series rings. We do not know the complete
answer, but we provide a partial one for this question as follows.

Remark 2.3. Let R be a reduced-over-idempotent ring. Then R is reduced (hence
Abelian) and Ch(R) = 2 by Lemma 1.2(1, 2). We will use these facts and Lemma
2.1(1) freely in the following computation.

Let 0 6= f(x) =
∑∞

i=0 aix
i ∈ R[[x]] be such that f(x)m ∈ Id(R[[x]]) for some

m ≥ 1. Then f(x)m = e = a0 by the proof of Proposition 2.2. Write mCk =
m(m−1)···(m−(k−1))

k(k−1)···2 = m!
(m−k)!k!

for 1 ≤ k ≤ m. Note that mCk is an integer and that

there exist even m’s such that mCk is odd for some 1 ≤ k ≤ m− 1, for example, 6C2,

14C2 and 14C4.

(i) Let m = 2. The coefficient of the term of degree 2 of f(x)2 is 0 = 2a0a2+a2
1 = a2

1,
so that a1 = 0. From this we see that the coefficient of the term of degree 22 of f(x)2

is 0 = 2a0a4 + a2
2 = a2

2, so that a2 = 0. Inductively assume that a1 = · · · = ak−1 = 0.
Then the coefficient of the term of degree k2 in f(x)2 is

0 = 2a0a2k + a2
k = a2

k,

so that ak = 0. Therefore we now have that ai = 0 for all i ≥ 1, concluding f(x) =
a0 ∈ Id(R[[x]]).

(ii) Let m = 3. The coefficient of the term of degree 1 of f(x)3 is 0 = 3a0a1 = a0a1.
The coefficient of the term of degree 2 of f(x)3 is 0 = 3a0a2 + 3a0a

2
1 = a0a2. The

coefficient of the term of degree 3 of f(x)3 is 0 = 3a0a3 + 3a0a1a2 + 3a0a2a1 + a3
1 =

a0a3 +a3
1. Multiplying this equality by a0, we get 0 = a0a3 +a0a

3
1 = a0a3. Inductively

assume that a0ai = 0 for i = 1, . . . , k − 1. Then the coefficient of the term of degree
k of f(x)3 is

0 = 3a0ak +
∑

s1+s2+s3=k and si<k

as1as2as3 = a0ak +
∑

s1+s2+s3=k and si<k

as1as2as3 .

Multiplying this equality by a0, we get

0 = a0ak + a0

∑
s1+s2+s3=k and si<k

as1as2as3 = a0ak +
∑

s1+s2+s3=k and si<k

a0as1as2as3 = a0ak

by assumption. Hence a0ai = 0 for all i ≥ 1.

Next we will show that ai = 0 for all i. From the equality 0 = a0a3 + a3
1 = a3

1, we
obtain a1 = 0. The coefficient of the term of degree 6 of f(x)3 is

0 = 3a0a6 + a3
2 +

∑
s1+s2+s3=6 and si<6

as1as2as3 = a3
2 +

∑
s1+s2+s3=6 and si<6

as1as2as3 .

But some si is either 0 or 1, hence
∑

s1+s2+s3=6 and si<6 as1as2as3 = 0 by the results

above, entailing a3
2 = 0. Thus a2 = 0.

Now inductively we assume that ai = 0 for i = 1, . . . , k − 1. The coefficient of the
term of degree 3k in f(x)3 is

0 = 3a0a3k + a3
k +

∑
s1+s2+s3=3k and si<3k

as1as2as3 = a3
k +

∑
s1+s2+s3=3k and si<3k

as1as2as3 .
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But some si is seated in [0, k − 1], hence
∑

s1+s2+s3=3k and si<3k as1as2as3 = 0 by as-

sumption and the result that a0ai = 0 for all i ≥ 1, entailing a3
k = 0. Thus ak = 0.

Then ai = 0 for all i ≥ 1. Consequently we now have f(x) = a0 ∈ Id(R[[x]]).

Now we consider the case of m ≥ 4. Note that the coefficient of degree vm of f(x)m

is

mC0a
m
v + mCm−1a

m−1
0 avm +

∑
i1+i2=vm and it<vm

mCm−2a
m−2
0 ai1ai2

+
∑

j1+j2+j3=vm and jp<vm

mCm−3a
m−3
0 aj1aj2aj3

+ · · ·+
∑

s1+s2+···+sm−2=vm and sq<vm

mC2a
2
0as1as2 · · · asm−2

+
∑

t1+t2+···+tm−1=vm and tw<vm

mC1a0at1at2 · · · atm−1

= amv + mC1a0avm +
∑

i1+i2=vm and it<vm

mC2a0ai1ai2

+
∑

j1+j2+j3=vm and jp<vm

mC3a0aj1aj2aj3

5 + · · ·+
∑

s1+s2+···+sk−2=vm and sq<vm

mC2a0as1as2 · · · asm−2

+
∑

t1+t2+···+tm−1=vm and tw<vm

mC1a0at1at2 · · · atm−1 , (∗)

where we use a0 ∈ Id(R)∩Z(R). Note that {i1, i2}∩ [0, v−1] 6= ∅, {j1, j2, j3}∩ [0, v−
1] 6= ∅ and {s1, s2, . . . , sm−2} ∩ [0, v − 1] 6= ∅.

(iii) Let m be an even integer such that mCk is even for all 1 ≤ k ≤ m − 1, for
example, m = 4. Then, for every v ≥ 1, the coefficient of the term of degree vm of
f(x)m is amv = 0 by the preceding (∗), so that av = 0. Thus f(x) = a0 ∈ Id(R[[x]]).

(iv) We do not know the computation of the general case that m ≥ 5 and mCk is
odd for some 1 ≤ k ≤ m− 1, for example, m = 6.

Let R be a ring with an endomorphism σ. Recall that the skew polynomial ring
R[x;σ] is a ring of polynomial in x with coefficients in R and subject to the relation
xr = σ(r)x for r ∈ R. The skew Laurent polynomial ring R[x, x−1;σ] is a localization
of R[x;σ] with respect to the set of powers of x.

For a ring R with a monomorphism σ, let A(R, σ) be the subset {x−irxi | r ∈ R
and i ≥ 0} of the skew Laurent polynomial ring R[x, x−1;σ]. Note that for j ≥ 0,
xjr = σj(r)xj implies rx−j = x−jσj(r) for r ∈ R. This yields that for each j ≥
0 we have x−irxi = x−(i+j)σj(r)xi+j. It follows that A(R, σ) forms a subring of
R[x, x−1;σ] with the following natural operations: x−irxi + x−jsxj = x−(i+j)(σj(r) +
σi(s))xi+j and (x−irxi)(x−jsxj) = x−(i+j)σj(r)σi(s)xi+j for r, s ∈ R and i, j ≥ 0.
Note that A(R, σ) is an over-ring of R, and the map σ̄ : A(R, σ) → A(R, σ) defined
by σ̄(x−irxi) = x−iσ(r)xi is an automorphism of A(R, σ). Jordan showed, with the
use of left localization of the skew polynomial R[x;σ] with respect to the set of powers
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of x, that for any pair (R, σ), such an extension A(R, σ) always exists in [9]. This
ring A(R, σ) is usually said to be the Jordan extension of R by σ.

Theorem 2.4. Let R be an Abelian ring with a monomorphism σ. Then R is
reduced-over-idempotent if and only if the Jordan extension A = A(R, σ) of R by σ
is reduced-over-idempotent.

Proof. It is enough to show the necessity by Proposition 1.5(1). Suppose that R is
reduced-over-idempotent and let an ∈ Id(A) for some n ≥ 1, where a = x−irxi ∈ A for
i, j ≥ 0. Then an = x−niσ(n−1)i(rn)xni ∈ Id(A) implies σ(n−1)i(rn) ∈ Id(R), because
Id(A) = {x−irxi | r ∈ Id(R) and i ≥ 0} clearly. Note that σ(Id(R)) = Id(R) since
σ is a monomorphism. So σ(n−1)i(rn) ∈ Id(R) yields rn ∈ Id(R), and thus r ∈ Id(R)
since R is reduced-over-idempotent. Therefore the Jordan extension A of R by σ is
reduced-over-idempotent.

A multiplicatively closed subset S of a ring R is said to satisfy the right Ore
condition if for each a ∈ R and b ∈ S, there exist a1 ∈ R and b1 ∈ S such that
ab1 = ba1. It is shown, by [13, Theorem 2.1.12], that S satisfies the right Ore condition
and S consists of regular elements if and only if the right quotient ring RS of R with
respect to S exists.

Recall that a ring R is called right (resp., left) p.p. if each principal right (resp.,
left) ideal of R is projective. It is well known that a ring R is right p.p. if and only
if the right annihilator of each element of R is generated by an idempotent. A ring is
called p.p. if it is both right and left p.p..

Following Goodearl [4], a ring R (possibly without identity) is called (von Neu-
mann) regular if for every a ∈ R there exists b ∈ R such that a = aba. It is easily
shown that J(R) = 0 if R is regular, and a ring R (possibly without identity) is called
strongly regular if a ∈ a2R for every a ∈ R. A ring is strongly regular if and only if it
is Abelian regular if and only if it is reduced regular, by [4, Theorems 3.2 and 3.5].

Proposition 2.5. Let S be a multiplicatively closed subset of an Abelian ring R.
(1) Suppose that S satisfies the right Ore condition. If the right quotient ring RS

of R with respect to S is reduced-over-idempotent, then so is R. Conversely, if R is
locally finite reduced-over-idempotent, then RS is strongly regular.

(2) Suppose that S consists of central regular elements and Id(S−1R) = {u−1e |
e ∈ Id(R) and u ∈ S}. Then R is reduced-over-idempotent if and only if S−1R is
reduced-over-idempotent.

Proof. (1) It is clear that R is reduced-over-idempotent when RS is reduced-over-
idempotent by Proposition 1.5(1), since R is a subring of RS.

Conversely, suppose that R is locally finite reduced-over-idempotent. Then R is
reduced regular by Lemma 1.2(1, 4) and so R is p.p. by [4, Theorem 1.1]. Moreover
RS is reduced by [10, Theorem 16]. We claim that RS is also p.p.. Let ab−1 ∈ RS.
Since R is right p.p., rR(a) = eR for some e ∈ Id(R). So ab−1e = aeb−1 = 0 and
eRS ⊆ rRS

(ab−1) follows. For the converse, let cd−1 ∈ rRS
(ab−1). Then ab−1cd−1 =

0 ⇒ ab−1c = 0 ⇒ cab−1 = 0, since RS is reduced. So ca = 0 ⇒ ac = 0
because R is reduced. Thus c ∈ eR ⇒ c = ec, and hence cd−1 = ecd−1 ∈ eRS and
rRS

(ab−1) ⊆ eRS. Consequently, we get rRS
(ab−1) = eRS, and thus RS is right p.p..

Moreover RS is left p.p. by [6, Lemma 1(i)], since it is reduced. Therefore RS is a
reduced p.p. ring and so it is strongly regular by [5, Lemma 3.3].
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(2) It is sufficient to show the necessity by Proposition 1.5(1). Assume that R is
reduced-over-idempotent, and let α = u−1a ∈ S−1R be such that αn ∈ Id(S−1R) for
some n ≥ 2. Then (un)−1an ∈ Id(S−1R), and so an ∈ Id(R) by hypothesis. But R is
reduced-over-idempotent, and hence a ∈ Id(R). This implies α = u−1a ∈ Id(S−1R),
concluding that S−1R is reduced-over-idempotent.

Notice that there exist rings in which the hypothesis “Id(S−1R) = {u−1e | e ∈
Id(R) and u ∈ S}” in Proposition 2.5(2) does not hold, by [11, page 1967], in general.

Let A be an algebra over a commutative ring S. Due to Dorroh [3], the Dor-
roh extension of A by S is the Abelian group A × S with multiplication given by
(r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2) for ri ∈ A and si ∈ S. We use A ×dor S to
denote the Dorroh extension of A by S.

Proposition 2.6. Let R be a unitary algebra over a commutative ring S. Suppose
that R is Boolean and S is reduced-over-idempotent. Then D = R×dor S is reduced-
over-idempotent.

Proof. Ch(R) = 2 by Lemma 1.2(2), and note that Id(D) = Id(R) × Id(S). For,
(r, s) ∈ Id(D) if and only if (r, s)2 = (r, s) if and only if (r2, s2) = (r, s) if and only if
(r, s) ∈ Id(R)× Id(S). We freely use these facts throughout this proof.

Let (r, s) ∈ D be such that (r, s)n ∈ Id(D) for some n ≥ 2. Then sn ∈ Id(S).
Since S is reduced-over-idempotent, s ∈ Id(S). If n = 2 then the result is obvious, so
suppose n ≥ 3. Since R is Boolean, we have

(r, s)n = (rn + 2(2n−1 − 1)sr, sn) = (rn, sn) = (r, s).

But (r, s)n ∈ Id(D) and (r, s) ∈ Id(D) follows. Therefore D is reduced-over-
idempotent.

As an application of Proposition 2.6, let R be a direct product of Z2’s and consider
R×dorZ2. Then this Dorroh extension is reduced-over-idempotent by Proposition 2.6.
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