• Title/Summary/Keyword: Semiconductor single crystals

Search Result 50, Processing Time 0.025 seconds

A Study on V-I characteristics depend on a distance between semiconductor-semiconductor (반도체-반도체 사이의 거리 변화에 따른 전압-전류 특성 연구)

  • Kim, Hye-Jeong;Kim, Jeong-Ho;Cheon, Min-U;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.52-56
    • /
    • 2004
  • The movement of electron in the semiconductor-gap-semiconductor was observed by the variation of V-I characteristic as a distance two ZnO(1010) single crystals. When the resistance between two crystals was $10^2{\sim}10^4{\Omega}$, V-I characteristics had the pattern of the field emission or ohmic contact. On the other hand, when the resistance was larger than $10^7{\Omega}$ by increasing the distance between two crystals, the effect of surface barrier was prominent. This result leads to the conclusion that both the field emission (or ohmic contact) and the surface barrier effect including the tunneling have the influence on V-I characteristics of mechanically contacted crystals.

  • PDF

Properties and Peculiar Features of Application of Isoelectronically Doped $A^2B^6$ Compound-Based Scintillators

  • Ryzhikov, V.;Starzhinskiy, N.
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.2
    • /
    • pp.77-84
    • /
    • 2005
  • The authors submit the data concerning the methods of obtaining semiconductor scintillators on the basis of the zinc chalcogenide crystal doped with impurities (Te, Cd, O, $Me^{III}-metals$ Al, In, etc.). Characteristics of such crystals and mechanisms for the semiconductor scintillator luminescence are described as well. The scintillator luminescence spectra maximums are located within the range 450-640nm, which depends on the method of preparing the scintillator. The luminescence decay time ranges within $0.5-10{\mu}s\;and\;30-150{\mu}s$. The afterglow level is less than 0.01% after $10-20{\mu}s$, and the radiation stability is ${\geq}5{\cdot}10^8$ rad. Thermostability of the output characteristics of new semiconductor scintillators on the basis of zinc selenide is prescribed by thermodynamic stability of the principal associative radiative recombination centers that come into existence due to the crystal lattice inherent imperfections. Certain application fields of the new scintillators are examined taking into account their particular qualities.

Conduction Anomaly in Oxygen Deficient Single Crystals of BaTiO$_3$ (환원 BaTiO$_3$반도체의 이상전도현상)

  • 성영권;장봉호;신동열
    • 전기의세계
    • /
    • v.22 no.3
    • /
    • pp.7-12
    • /
    • 1973
  • Single crystals of BaTiO$_{3}$ which were grown by Remeika's method were on reducing them is hydrogen atmosphere at about 400-1000.deg. C for about 30hrs. They became light brown and seems to have an effect on their properties by oxygen deffects especially at a Curie temperature of 122.deg. C exhibitted abnormal reducting resistivity. These semiconducting tendency were studied experimentally by observing through several electrical properties and were discussed on the basis of exchange semiconductor mechanism.

  • PDF

Thermodynamic Process Design of CaF2 Single Crystal Growth for Optical Applications (광학응용 CaF2 단결정성장을 위한 열역학적 공정설계)

  • Seong-Min Jeong;Hae-Jin Jeon;Yun-Ji Shin;Hyoung-Seuk Choi;Si-Young Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.197-202
    • /
    • 2023
  • Calcium fluoride (CaF2) single crystal is applied to numerous industrial applications, especially for optical uses. To have excellent optical transmission properties, however, CaF2 crystals should be carefully fabricated through liquid-phase crystal growth techniques. In this study, as one of the early stage research activities to grow CaF2 crystals with a good transmittance at the ultraviolet wavelength range, computational thermodynamic models were provided to deepen the understanding of the crystal growing processes of CaF2 under various conditions. To remove point defects and oxygen impurities in the grown CaF2 crystals, the system was thermodynamically evaluated to get optimal process conditions. From the reviews of previous experimental studies, computational thermodynamic approaches were found to be an effective and powerful tool to understand the meaning of the crystal growth processes and to obtain optimal process conditions.

The latest development in the preparation of indium phosphide (InP) poly- crystals and single crystals

  • Guohao Ren;Kyoon Choi;Eui-Seok Choi;Myung-Hwan Oh
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.5
    • /
    • pp.222-229
    • /
    • 2003
  • InP crystal is an increasingly important semiconductor material in the application of long-wave optoelectronic and high frequency devices. The equilibrium vapor pressure of phosphorus at the melting point of InP is so high that the synthesis process is very difficult. Liquid-encapsulated Czochralski (LEC) pulling from the melt at high pressure is a generally favored technique to grow InP single crystals. This technique involves two steps: the synthesis of polycrystalline powder and the growth of single crystal from the melt at high pressure. This article reviewed the latest development in the preparation of InP crystal and the evaluation on the crystal quality.

Epitaxial Growth of Three-Dimensional ZnO and GaN Light Emitting Crystals

  • Yang, Dong Won;Park, Won Il
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.108-115
    • /
    • 2018
  • The increasing demands for three-dimensional (3D) electronic and optoelectronic devices have triggered interest in epitaxial growth of 3D semiconductor materials. However, most of the epitaxially-grown nano- and micro-structures available so far are limited to certain forms of crystal arrays, and the level of control is still very low. In this review, we describe our latest progress in 3D epitaxy of oxide and nitride semiconductor crystals. This paper covers issues ranging from (i) low-temperature solution-phase synthesis of a well-regulated array of ZnO single crystals to (ii) systematic control of the axial and lateral growth rate correlated to the diameter and interspacing of nanocrystals, as well as the concentration of additional ion additives. In addition, the critical aspects in the heteroepitaxial growth of GaN and InGaN multilayers on these ZnO nanocrystal templates are discussed to address its application to a 3D light emitting diode array.

Characterizations of Microscopic Defect Distribution on (-201) Ga2O3 Single Crystal Substrates ((-201)면 산화갈륨 단결정 기판 미세 결함 분석)

  • Choi, Mee-Hi;Shin, Yun-Ji;Cho, Seong-Ho;Jeong, Woon-Hyeon;Jeong, Seong-Min;Bae, Si-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.504-508
    • /
    • 2022
  • Single crystal gallium oxide (Ga2O3) has been an emerging material for power semiconductor applications. However, the defect distribution of Ga2O3 substrates needs to be carefully characterized to improve crystal quality during crystal growth. We analyzed the type and the distribution of defects on commercial (-201) Ga2O3 substrates to get a basic standard prior to growing Ga2O3 crystals. Etch pit technique was employed to expose the type of defects on the Ga2O3 substrates. Synchrotron white beam X-ray topography was also utilized to observe the defect distribution by a nondestructive manner. We expect that the observation of defect distribution with three-dimensional geometry will also be useful for other crystal planes of Ga2O3 single crystals.

One Alternative Process to Vapor Pressure Control for the Bulk Crystal Growth of GaAs

  • Oh, Myung-Hwan;Joo, Seung-Ki
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.149-156
    • /
    • 1998
  • In this work, aiming at improvement of growth processes for the bulk GaAs single crystals, efforts have been made first in investigate thermodynamic properties of the Ga and As system and second to suggest that bulk GaAs crystals could be grown in principle with the single temperature zone only by determining the excess arsenic charge as a function of growth conditions. During crystal growth, this will be evaporized inside the growth chamber to induce the required inner pressure, instead of aesenic vapor pressure in the double temperature zone method, so as to be in equilibrium with the method, growth experiments have been prepared and carried out for dopes and undoped GaAs crystals with the newly built Bridgman system which was designed according to this principle. To compare the results to those of the double temperature zone method, the same numbers of GaAs crystals have been grown with both processes and all of them were characterized in single crystallinity, lattice defects and electrical properties. Especially, the relationship between growth conditions and crystal quality was discussed from the viewpoint of growth peculiarities with this method.

  • PDF

The structure of $Ga_2O_3$ nanomaterials synthesized by the GaN single crystal (GaN 단결정에 의해 제조된 $Ga_2O_3$ 나노물질의 구조)

  • 박상언;조채룡;김종필;정세영
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.120-120
    • /
    • 2003
  • The metallic oxide nanomaterials including ZnO, Ga$_2$O$_3$, TiO$_2$, and SnO$_2$ have been synthesized by a number of methods including laser ablation, arc discharge, thermal annealing procedure, catalytic growth processes, and vapor transport. We have been interested in preparing the nanomaterials of Ga$_2$O$_3$, which is a wide band gap semiconductor (E$_{g}$ =4.9 eV) and used as insulating oxide layer for all gallium-based semiconductor. Ga$_2$O$_3$ is stable at high temperature and a transparent oxide, which has potential application in optoelectronic devices. The Ga$_2$O$_3$ nanoparticles and nanobelts were produced using GaN single crystals, which were grown by flux method inside SUS$^{TM}$ cell using a Na flux and exhibit plate-like morphologies with 4 ~ 5 mm in size. In these experiments, the conventional electric furnace was used. GaN single crystals were pulverized in form of powder for the growth of Ga$_2$O$_3$ nanomaterials. The structure, morphology and composition of the products were studied mainly by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM).).

  • PDF

Halide Perovskite Single Crystals (할라이드 페로브스카이트 단결정)

  • Choi, Jin San;Jo, Jae Hun;Woo, Do Hyun;Hwang, Young-Hun;Kim, Ill Won;Kim, Tae Heon;Ahn, Chang Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.283-295
    • /
    • 2021
  • For the last decades, a research hotspot for the halide perovskites (HPs) is now showing great progress in terms of improving efficiency for numerous photovoltaic devices (PVDs). However, it still faces challenges in the case of long-term stability in the air atmosphere. Defect-free high-quality HP single crystals show their promising properties for the remarkable development of highly efficient and stable PVDs. Here, we summarize the growth processing routes for the stable HP single crystals as well as briefly discuss the pros and cons of those well-established synthesis routes. Furthermore, we briefly include the comparison note between the HP single crystals and polycrystalline perovskite films regarding their device applications. Based on the future progress, the review concludes subjective perspectives and current challenges for the development of HPs high-quality PVDs.