Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.5.283

Halide Perovskite Single Crystals  

Choi, Jin San (Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan)
Jo, Jae Hun (Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan)
Woo, Do Hyun (Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan)
Hwang, Young-Hun (Department of Semiconductor Applications, Ulsan College)
Kim, Ill Won (Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan)
Kim, Tae Heon (Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan)
Ahn, Chang Won (Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.5, 2021 , pp. 283-295 More about this Journal
Abstract
For the last decades, a research hotspot for the halide perovskites (HPs) is now showing great progress in terms of improving efficiency for numerous photovoltaic devices (PVDs). However, it still faces challenges in the case of long-term stability in the air atmosphere. Defect-free high-quality HP single crystals show their promising properties for the remarkable development of highly efficient and stable PVDs. Here, we summarize the growth processing routes for the stable HP single crystals as well as briefly discuss the pros and cons of those well-established synthesis routes. Furthermore, we briefly include the comparison note between the HP single crystals and polycrystalline perovskite films regarding their device applications. Based on the future progress, the review concludes subjective perspectives and current challenges for the development of HPs high-quality PVDs.
Keywords
Single crystals; Halide perovskite; Processing routes; Photovoltaic devices;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Liu, Y. Zhang, K. Zhao, Z. Yang, J. Feng, X. Zhang, K. Wang, L. Meng, H. Ye, M. Liu, and S. Liu, Adv. Mater., 30, 1707314 (2018). [DOI: https://doi.org/10.1002/adma.201707314]   DOI
2 Y. Wang, F. Yang, X. Li, F. Ru, P. Liu, L. Wang, W. Ji, J. Xia, and X. Meng, Adv. Funct. Mater., 29, 1904913 (2019). [DOI: https://doi.org/10.1002/adfm.201904913]   DOI
3 G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu, and O. M. Bakr, J. Phys. Chem. Lett., 6, 3781 (2015). [DOI: https://doi.org/10.1021/acs.jpclett.5b01666]   DOI
4 S. A. Morley, H. Marquez, and D. Lederman, APL Mater., 8, 011101 (2020). [DOI: https://doi.org/10.1063/1.5126601]   DOI
5 T. Miyadera, Y. Auchi, T. Koganezawa, H. Yaguchi, and M. Chikamatsu, APL Mater., 8, 041104 (2020). [DOI: https://doi.org/10.1063/1.5142307]   DOI
6 F. Cao, W. Tian, M. Wang, M. Wang, and L. Li, InfoMat, 2, 577 (2020). [DOI: https://doi.org/10.1002/inf2.12074]   DOI
7 Y. Q. Huang, J. Su, Q. F. Li, D. Wang, L. H. Xu, and Y. Bai, Phys. B, 563, 107 (2019). [DOI: https://doi.org/10.1016/j.physb.2019.03.035]   DOI
8 B. B. Zhang, F. Wang, H. Zhang, B. Xiao, Q. Sun, J. Guo, A. B. Hafsia, A. Shao, Y. Xu, and J. Zhou, Appl. Phys. Lett., 116, 063505 (2020). [DOI: https://doi.org/10.1063/1.5134108]   DOI
9 Y. Wang, C. Jia, Z. Fan, Z. Lin, S. J. Lee, T. L. Atallah, J. R. Caram, Y. Huang, and X. Duan, Nano Lett., 21, 1454 (2021). [DOI: https://doi.org/10.1021/acs.nanolett.0c04594]   DOI
10 G. Walters, B. R. Sutherland, S. Hoogland, D. Shi, R. Comin, D. P. Sellan, O. M. Bakr, and E. H. Sargent, ACS Nano, 9, 9340 (2015). [DOI: https://doi.org/10.1021/acsnano.5b03308]   DOI
11 Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun, X. Liu, J. Zhang, Q. Wei, H. Fan, F. Yu, X. Zhang, C. Zhao, and S. Liu, Adv. Mater., 27, 5176 (2015). [DOI: https://doi.org/10.1002/adma.201502597]   DOI
12 Y. Dang, Y. Liu, Y. Sun, D. Yuan, X. Liu, W. Lu, G. Liu, H. Xia, and X. Tao, CrystEngComm, 17, 665 (2015). [DOI: https://doi.org/10.1039/C4CE02106A]   DOI
13 L. Lee, J. Baek, K. S. Park, Y. E. Lee, N. K. Shrestha, and M. M. Sung, Nat. Commun., 8, 15882 (2017). [DOI: https://doi.org/10.1038/ncomms15882]   DOI
14 B. Wenger, P. K. Nayak, X. Wen, S. V. Kesava, N. K. Noel, and H. J. Snaith, Nat. Commun., 8, 590 (2017). [DOI: https://doi.org/10.1038/s41467-017-00567-8]   DOI
15 H. H. Fang, S. Adjokatse, H. Wei, J. Yang, G. R. Blake, J. Huang, J. Even, and M. A. Loi, Sci. Adv., 2, e1600534 (2016). [DOI: https://doi.org/10.1126/sciadv.1600534]   DOI
16 T. Baikie, N. S. Barrow, Y. Fang, P. J. Keenan, P. R. Slater, R. O. Piltz, M. Gutmann, S. G. Mhaisalkar, and T. J. White, J. Mater. Chem. A, 3, 9298 (2015). [DOI: https://doi. org/10.1039/C5TA01125F]   DOI
17 J. M. Kadro, K. Nonomura, D. Gachet, M. Gratzel, and A. Hagfeldt, Sci. Rep., 5, 11654 (2015). [DOI: https://doi.org/10.1038/srep11654]   DOI
18 NREL, Best Research-Cell Efficiencies, https://www.nrel.gov/pv/cell-efficiency.html (2021).
19 N. Phung, A. Al-Ashouri, S. Meloni, A. Mattoni, S. Albrecht, E. L. Unger, A. Merdasa, and A. Abate, Adv. Energy Mater., 10, 1903735 (2020). [DOI: https://doi.org/10.1002/aenm.201903735]   DOI
20 D. Prochowicz, M. M. Tavakoli, A. Q. Alanazi, S. Trivedi, H. T. Dastjerdi, S. M. Zakeeruddin, M. Gratzel, and P. Yadav, ACS Omega, 4, 16840 (2019). [DOI: https://doi.org/10.1021/acsomega.9b01701]   DOI
21 H. Diab, G. Trippe-Allard, F. Ledee, K. Jemli, C. Vilar, G. Bouchez, V.L.R. Jacques, A. Tejeda, J. Even, J. S. Lauret, E. Deleporte, and D. Garrot, J. Phys. Chem. Lett., 7, 5093 (2016). [DOI: https://doi.org/10.1021/acs.jpclett.6b02261]   DOI
22 B. Wu, H. T. Nguyen, Z. Ku, G. Han, D. Giovanni, N. Mathews, H. J. Fan, and T. C. Sum, Adv. Energy Mater., 6, 1600551 (2016). [DOI: https://doi.org/10.1002/aenm.201600551]   DOI
23 J. Tilchin, D. N. Dirin, G. I. Maikov, A. Sashchiuk, M. V. Kovalenko, and E. Lifshitz, ACS Nano, 10, 6363 (2016). [DOI: https://doi.org/10.1021/acsnano.6b02734]   DOI
24 S. Brittman and E. C. Garnett, J. Phys. Chem. C, 120, 616 (2016). [DOI: https://doi.org/10.1021/acs.jpcc.5b11075]   DOI
25 C. W. Ahn, J. H. Jo, J. C. Kim, H. Ullah, S. Ryu, Y. Hwang, J. S. Choi, J. Lee, S. Lee, H. Jeen, Y. H. Shin, H. Y. Jeong, I. W. Kim, and T. H. Kim, J. Materiomics, 6, 651 (2020). [DOI: https://doi.org/10.1016/j.jmat.2020.05.008]   DOI
26 S. Dastidar, C. J. Hawley, A. D. Dillon, A. D. Gutierrez-Perez, J. E. Spanier, and A. T. Fafarman, J. Phys. Chem. Lett., 8, 1278 (2017). [DOI: https://doi.org/10.1021/acs.jpclett.7b00134]   DOI
27 D. B. Straus, S. Guo, and R. J. Cava, J. Am. Chem. Soc., 141, 11435 (2019). [DOI: https://doi.org/10.1021/jacs.9b06055]   DOI
28 J. Su, Y. Q. Huang, H. Chen, and J. Huang, Cryst. Res. Technol., 55, 1900222 (2020). [DOI: https://doi.org/10.1002/crat.201900222]   DOI
29 N. Leupold, K. Schotz, S. Cacovich, I. Bauer, M. Schultz, M. Daubinger, L. Kaiser, A. Rebai, J. Rousset, A. Kohler, P. Schulz, R. Moos, and F. Panzer, ACS Appl. Mater. Interfaces, 11, 30259 (2019). [DOI: https://doi.org/10.1021/acsami.9b09160]   DOI
30 Z. Zuo, J. Ding, Y. Zhao, S. Du, Y. Li, X. Zhan, and H. Cui, J. Phys. Chem. Lett., 8, 684 (2017). [DOI: https://doi.org/10.1021/acs.jpclett.6b02812]   DOI
31 F. Wei, Z. Deng, S. Sun, F. Zhang, D. M. Evans, G. Kieslich, S. Tominaka, M. A. Carpenter, J. Zhang, P. D. Bristowe, and A. K. Cheetham, Chem. Mater., 29, 1089 (2017). [DOI: https://doi.org/10.1021/acs.chemmater.6b03944]   DOI
32 Z. Hong, D. Tan, R. A. John, Y.K.E. Tay, Y.K.T. Ho, X. Zhao, T. C. Sum, N. Mathews, F. Garcia, and H. S. Soo, iScience, 16, 312 (2019). [DOI: https://doi.org/10.1016/j.isci.2019.05.042]   DOI
33 M. I. Saidaminov, A. L. Abdelhady, B. Murali, E. Alarousu, V. M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, G. Maculan, A. Goriely, T. Wu, O. F. Mohammed, and O. M. Bakr, Nat. Commun., 6, 7586 (2015). [DOI: https://doi.org/10.1038/ncomms8586]   DOI
34 Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, Science, 347, 967 (2015). [DOI: https://doi.org/10.1126/science.aaa5760]   DOI
35 C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, B. W. Wessels, and M. G. Kanatzidis, Cryst. Growth Des., 13, 2722 (2013). [DOI: https://doi.org/10.1021/cg400645t]   DOI
36 J. Luo, S. Li, H. Wu, Y. Zhou, Y. Li, J. Liu, J. Li, K. Li, F. Yi, G. Niu, and J. Tang, ACS Photonics, 5, 398 (2018). [DOI: https://doi.org/10.1021/acsphotonics.7b00837]   DOI
37 H. S. Rao, W. G. Li, B. X. Chen, D. B. Kuang, and C. Y. Su, Adv. Mater., 29, 1602639 (2017). [DOI: https://doi.org/10.1002/adma.201602639]   DOI
38 Y. Zhao, C. Zhao, X. Chen, T. Luo, M. Ding, T. Ye, W. Zhang, and H. Chang, J. Mater. Sci.: Mater. Electron., 31, 2167 (2020). [DOI: https://doi.org/10.1007/s10854-019-02742-7]   DOI
39 J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, Nano Lett., 13, 1764 (2013). [DOI: https://doi.org/10.1021/nl400349b]   DOI
40 A. Y. Alsalloum, B. Turedi, X. Zheng, S. Mitra, A. A. Zhumekenov, K. J. Lee, P. Maity, I. Gereige, A. AlSaggaf, I. S. Roqan, O. F. Mohammed, and O. M. Bakr, ACS Energy Lett., 5, 657 (2020). [DOI: https://doi.org/10.1021/acsenergylett.9b02787]   DOI
41 B. Murali, H. K. Kolli, J. Yin, R. Ketavath, O. M. Bakr, and O. F. Mohammed, ACS Mater. Lett., 2, 184 (2020). [DOI: https://doi.org/10.1021/acsmaterialslett.9b00290]   DOI
42 Y. Yang, Y. Yan, M. Yang, S. Choi, K. Zhu, J. M. Luther, and M. C. Beard, Nat. Commun., 6, 7961 (2015). [DOI: https://doi.org/10.1038/ncomms8961]   DOI
43 Z. Chen, Q. Dong, Y. Liu, C. Bao, Y. Fang, Y. Lin, S. Tang, Q. Wang, X. Xiao, Y. Bai, Y. Deng, and J. Huang, Nat. Commun., 8, 1890 (2017). [DOI: https://doi.org/10.1038/s41467-017-02039-5]   DOI
44 D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, Science, 347, 519 (2015). [DOI: https://doi.org/10.1126/science.aaa2725]   DOI
45 C. Zuo and L. Ding, Angew. Chem. Int. Ed., 56, 6528 (2017). [DOI: https://doi.org/10.1002/anie.201702265]   DOI
46 M. Daub and H. Hillebrecht, Angew. Chem. Int. Ed., 54, 11016 (2015). [DOI: https://doi.org/10.1002/anie.201506449]   DOI
47 W. Q. Liao, Y. Zhang, C. L. Hu, J. G. Mao, H. Y. Ye, P. F. Li, S. D. Huang, and R. G. Xiong, Nat. Commun., 6, 7338 (2015). [DOI: https://doi.org/10.1038/ncomms8338]   DOI
48 D. L. Reger, S. R. Goode, and D. W. Ball, Chemistry: Principles and Practice (Cengage Learning, Belmont, CA, USA, 2009) p. 482.
49 J. W. Moore, C. L. Stanitski, and P. C. Jurs, Principles of Chemistry: The Molecular Science, 1st edn. (Cengage Learning, Belmont, CA, USA, 2010) p. 513.
50 Z. Lian, Q. Yan, T. Gao, J. Ding, Q. Lv, C. Ning, Q. Li, and J. I. Sun, J. Am. Chem. Soc., 138, 9409 (2016). [DOI: https://doi.org/10.1021/jacs.6b05683]   DOI
51 Y. Bi, E. M. Hutter, Y. Fang, Q. Dong, J. Huang, and T. J. Savenije, J. Phys. Chem. Lett., 7, 923 (2016). [DOI: https://doi.org/10.1021/acs.jpclett.6b00269]   DOI
52 Y. Liu, J. Sun, Z. Yang, D. Yang, X. Ren, H. Xu, Z. Yang, and S. Liu, Adv. Opt. Mater., 4, 1829 (2016). [DOI: https://doi.org/10.1002/adom.201600327]   DOI
53 Y. Liu, X. Ren, J. Zhang, Z. Yang, D. Yang, F. Yu, J. Sun, C. Zhao, Z. Yao, B. Wang, Q. Wei, F. Xiao, H. Fan, H. Deng, L. Deng, and S. F. Liu, Sci. China: Chem., 60, 1367 (2017). [DOI: https://doi.org/10.1007/s11426-017-9081-3]   DOI
54 Y. Liu, Y. Zhang, Z. Yang, D. Yang, X. Ren, L. Pang, and S. Liu, Adv. Mater., 28, 9204 (2016). [DOI: https://doi.org/10.1002/adma.201601995]   DOI
55 Y. H. Deng, Z. Q. Yang, and R. M. Ma, Nano Convergence, 7, 25 (2020). [DOI: https://doi.org/10.1186/s40580-020-00236-5]   DOI
56 H. S. Rao, B. X. Chen, X. D. Wang, D. B. Kuang, and C. Y. Su, Chem. Commun., 53, 5163 (2017). [DOI: https://doi.org/10.1039/C7CC02447A]   DOI
57 Y. X. Chen, Q. Q. Ge, Y. Shi, J. Liu, D. J. Xue, J. Y. Ma, J. Ding, H. J. Yan, J. S. Hu, and L. J. Wan, J. Am. Chem. Soc., 138, 16196 (2016). [DOI: https://doi.org/10.1021/jacs.6b09388]   DOI
58 H. L. Yue, H. H. Sung, and F. C. Chen, Adv. Electron. Mater., 4, 1700655 (2018). [DOI: https://doi.org/10.1002/aelm.201700655]   DOI
59 X. D. Wang, W. G. Li, J. F. Liao, and D. B. Kuang, Sol. RRL, 3, 1800294 (2019). [DOI: https://doi.org/10.1002/solr.201800294]   DOI
60 Z. Yang, Y. Deng, X. Zhang, S. Wang, H. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang, and R. Ma, Adv. Mater., 30, 1704333 (2018). [DOI: https://doi.org/10.1002/adma.201704333]   DOI
61 K. Kimura, Y. Nakamura, T. Matsushita, and T. Kondo, Jpn. J. Appl. Phys., 58, SBBF04 (2019). [DOI: https://doi.org/10.7567/1347-4065/aafed0]   DOI
62 Y. Yamada, T. Yamada, L. Q. Phuong, N. Maruyama, H. Nishimura, A. Wakamiya, Y. Murata, and Y. Kanemitsu, J. Am. Chem. Soc., 137, 10456 (2015). [DOI: https://doi.org/10.1021/jacs.5b04503]   DOI
63 P. Zhang, G. Zhang, L. Liu, D. Ju, L. Zhang, K. Cheng, and X. Tao, J. Phys. Chem. Lett., 9, 5040 (2018). [DOI: https://doi.org/10.1021/acs.jpclett.8b01945]   DOI
64 L. Wang, P. Chen, N. Thongprong, M. Young, P. S. Kuttipillai, C. Jiang, P. Zhang, K. Sun, P. M. Duxbury, and R. R. Lunt, Adv. Mater. Interfaces, 4, 1701003 (2017). [DOI: https://doi.org/10.1002/admi.201701003]   DOI
65 J. Li, X. Du, G. Niu, H. Xie, Y. Chen, Y. Yuan, Y. Gao, H. Xiao, J. Tang, A. Pan, and B. Yang, ACS Appl. Mater. Interfaces, 12, 989 (2020). [DOI: https://doi.org/10.1021/acsami.9b14772]   DOI
66 G. Grancini, V. D'Innocenzo, E. R. Dohner, N. Martino, A.R.S. Kandada, E. Mosconi, F. De Angelis, H. I. Karunadasa, E. T. Hoke, and A. Petrozza, Chem. Sci., 6, 7305 (2015). [DOI: https://doi.org/10.1039/C5SC02542G]   DOI
67 L. Ji, H. Y. Hsu, J. C. Lee, A. J. Bard, and E. T. Yu, Nano Lett., 18, 994 (2018). [DOI: https://doi.org/10.1021/acs.nanolett.7b04445]   DOI
68 L. Wang, P. Chen, P. S. Kuttipillai, I. King, R. Staples, K. Sun, and R. R. Lunt, ACS Appl. Mater. Interfaces, 11, 32076 (2019). [DOI: https://doi.org/10.1021/acsami.9b05592]   DOI
69 Y. Wang, X. Sun, Z. Chen, Y. Y. Sun, S. Zhang, T. M. Lu, E. Wertz, and J. Shi, Adv. Mater., 29, 1702643 (2017). [DOI: https://doi.org/10.1002/adma.201702643]   DOI
70 J. Jiang, X. Sun, X. Chen, B. Wang, Z. Chen, Y. Hu, Y. Guo, L. Zhang, Y. Ma, L. Gao, F. Zheng, L. Jin, M. Chen, Z. Ma, Y. Zhou, N. P. Padture, K. Beach, H. Terrones, Y. Shi, D. Gall, T. M. Lu, E. Wertz, J. Feng, and J. Shi, Nat. Commun., 10, 4145 (2019). [DOI: https://doi.org/10.1038/s41467-019-12056-1]   DOI
71 M. I. Saidaminov, V. Adinolfi, R. Comin, A. L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E. H. Sargent, and O. M. Bakr, Nat. Commun., 6, 8724 (2015). [DOI: https://doi.org/10.1038/ncomms9724]   DOI
72 J. Chen, D. J. Morrow, Y. Fu, W. Zheng, Y. Zhao, L. Dang, M. J. Stolt, D. D. Kohler, X. Wang, K. J. Czech, M. P. Hautzinger, S. Shen, L. Guo, A. Pan, J. C. Wright, and S. Jin, J. Am. Chem. Soc., 139, 13525 (2017). [DOI: https://doi.org/10.1021/jacs.7b07506]   DOI
73 L. Gao and G. Yang, Sol. RRL, 4, 1900200 (2020). [DOI: https://doi.org/10.1002/solr.201900200]   DOI
74 Q. Han, S. H. Bae, P. Sun, Y. T. Hsieh, Y. Yang, Y. S. Rim, H. Zhao, Q. Chen, W. Shi, G. Li, and Y. Yang, Adv. Mater., 28, 2253 (2016). [DOI: https://doi.org/10.1002/adma.201505002]   DOI
75 T. Zhang, M. Yang, E. E. Benson, Z. Li, J. van de Lagemaat, J. M. Luther, Y. Yan, K. Zhu, and Y. Zhao, Chem. Commun., 51, 7820 (2015). [DOI: https://doi.org/10.1039/C5CC01835H]   DOI
76 D. M. Trots and S. V. Myagkota, J. Phys. Chem. Solids, 69, 2520 (2008). [DOI: https://doi.org/10.1016/j.jpcs.2008.05.007]   DOI