DOI QR코드

DOI QR Code

Epitaxial Growth of Three-Dimensional ZnO and GaN Light Emitting Crystals

  • Yang, Dong Won (Division of Materials Science and Engineering, Hanyang University) ;
  • Park, Won Il (Division of Materials Science and Engineering, Hanyang University)
  • Received : 2018.02.28
  • Accepted : 2018.03.06
  • Published : 2018.03.31

Abstract

The increasing demands for three-dimensional (3D) electronic and optoelectronic devices have triggered interest in epitaxial growth of 3D semiconductor materials. However, most of the epitaxially-grown nano- and micro-structures available so far are limited to certain forms of crystal arrays, and the level of control is still very low. In this review, we describe our latest progress in 3D epitaxy of oxide and nitride semiconductor crystals. This paper covers issues ranging from (i) low-temperature solution-phase synthesis of a well-regulated array of ZnO single crystals to (ii) systematic control of the axial and lateral growth rate correlated to the diameter and interspacing of nanocrystals, as well as the concentration of additional ion additives. In addition, the critical aspects in the heteroepitaxial growth of GaN and InGaN multilayers on these ZnO nanocrystal templates are discussed to address its application to a 3D light emitting diode array.

Keywords

References

  1. N. Kroger, S. Lorenz, E. Brunner, and M. Sumper, "Self-assembly of Highly Phosphorylated Silaffins and Their Function in Biosilica Morphogenesis," Science, 298 [5593] 584-86 (2002). https://doi.org/10.1126/science.1076221
  2. S. V. Patwardhan, N. Mukherjee, M. Steinitz-Kannan, and S. J. Clarson, "Bioinspired Synthesis of New Silica Structures," Chem. Commun., 9 [10] 1122-23 (2003).
  3. E. Pouget, E. Dujardin, A. Cavalier, A. Moreac, C. Valery, V. Marchi-Artzner, T. Weiss, A. Renault, M. Paternostre, and F. Artzner, "Hierarchical Architectures by Synergy between Dynamical Template Self-Assembly and Biomineralization," Nat. Mater., 6 [6] 434-39 (2007). https://doi.org/10.1038/nmat1912
  4. M. Sumper, S. Lorenz, and E. Brunner, "Biomimetic Control of Size in the Polyamine-Directed Formation of Silica Nanospheres," Angew. Chem., Int. Ed., 42 [42] 5192-95 (2003). https://doi.org/10.1002/anie.200352212
  5. N. Kroger and N. Poulsen, "Diatoms-From Cell Wall Biogenesis to Nanotechnology," Annu. Rev. Genet., 42 83-107 (2008). https://doi.org/10.1146/annurev.genet.41.110306.130109
  6. R. Boruah, P. Nath, D. Mohanta, G. A. Ahmed, and A. Choudhury, "Photonic Properties of Butterfly Wing Infiltrated with Ag-Nanoparticles," Nanosci. Nanotech. Lett., 3 [4] 458-62 (2011). https://doi.org/10.1166/nnl.2011.1203
  7. J. Y. Huang, X. D. Wang, and Z. L. Wang, "Controlled Replication of Butterfly Wings for Achieving Tunable Photonic Properties," Nano Lett., 6 [10] 2325-31 (2006). https://doi.org/10.1021/nl061851t
  8. T. S. Kustandi, H. Y. Low, J. H. Teng, I. Rodriguez, and R. Yin, "Mimicking Domino-Like Photonic Nanostructures on Butterfly Wings," Small, 5 [5] 574-78 (2009). https://doi.org/10.1002/smll.200801282
  9. R. K. Cheedarala, J. H. Jeon, C. D. Kee, and I. K. Oh. "Bio-Inspired All-Organic Soft Actuator Based on a ${\pi}-{\pi}$ Stacked 3D Ionic Network Membrane and Ultra-Fast Solution Processing," Adv. Funct. Mater., 24 [38] 6005-15 (2014). https://doi.org/10.1002/adfm.201401136
  10. M. L. Gou, X. Qu, W. Zhu, M. L. Xiang, J. Yang, K. Zhang, Y. Q. Wei, and S. C. Chen, "Bio-Inspired Detoxification Using 3D-Printed Hydrogel Nanocomposites," Nat. Commun., 5 3774 (2014). https://doi.org/10.1038/ncomms4774
  11. J. H. Huang, J. Kim, N. Agrawal, A. P. Sudarson, J. E. Maxim, A. Jayaraman, and V. M. Ugaz, "Rapid Fabrication of Bio-inspired 3D Microfluidic Vascular Networks," Adv. Mater., 21 [35] 3567-71 (2009). https://doi.org/10.1002/adma.200900584
  12. H. Y. Li, Y. J. Hwang, B. A. E. Courtright, F. N. Eberle, S. Subramaniyan, and S. A. Jenekhe, "Fine-Tuning the 3D Structure of Nonfullerene Electron Acceptors toward High-Performance Polymer Solar Cells," Adv. Mater., 27 [21] 3266-72 (2015). https://doi.org/10.1002/adma.201500577
  13. J. Lott, C. Ryan, B. Valle, J. R. Johnson, D. A. Schiraldi, J. Shan, K. D. Singer, and C. Weder, "Two-Photon 3D Optical Data Storage via Aggregate Switching of Excimer-Forming Dyes," Adv. Mater., 23 [21] 2425-29 (2011). https://doi.org/10.1002/adma.201100458
  14. S. Wooh, H. Yoon, J. H. Jung, Y. G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, "Efficient Light Harvesting with Micropatterned 3D Pyramidal Photoanodes in Dye-Sensitized Solar Cells," Adv. Mater., 25 [22] 3111-16 (2013). https://doi.org/10.1002/adma.201300085
  15. Z. Yan, F. Zhang, F. Liu, M. D. Han, D. P. Ou, Y. H. Liu, Q. Lin, X. L. Guo, H. R. Fu, Z. Q. Xie, M. Y. Gao, Y. M. Huang, J. Kim, Y. T. Qiu, K. W. Nan, J. Kim, P. Gutruf, H. Y. Luo, A. Zhao, K. C. Hwang, Y. G. Huang, Y. H. Zhang, and J. A. Rogers, "Mechanical Assembly of Complex, 3D Mesostructures from Releasable Multilayers of Advanced Materials," Sci. Adv., 2 [9] 1601014 (2016). https://doi.org/10.1126/sciadv.1601014
  16. J. Yi, Y. C. Wang, Y. W. Jiang, I. W. Jung, W. J. Liu, V. De Andrade, R. Q. Xu, R. Parameswaran, I. R. Peters, R. Divan, X. H. Xiao, T. Sun, Y. Lee, W. I. Park, and B. Tian, "3D Calcite Heterostructures for Dynamic and Deform- able Mineralized Matrices," Nat. Commun., 8 [1] 509 (2017). https://doi.org/10.1038/s41467-017-00560-1
  17. M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct Laser Writing of Three-Dimensional Photonic-Crystal Templates for Telecommunications," Nat. Mater., 3 [7] 444-47 (2004). https://doi.org/10.1038/nmat1155
  18. T. A. Schaedler, A. J. Jacobsen, A. Torrents, A. E. Sorensen, J. Lian, J. R. Greer, L. Valdevit, and W. B. Carter, "Ultralight Metallic Microlattices," Science, 334 [6058] 962-65 (2011). https://doi.org/10.1126/science.1211649
  19. S. Shoji and S. Kawata, "Photofabrication of Three-Dimensional Photonic Crystals by Multibeam Laser Interference into a Photopolymerizable Resin," Appl. Phys. Lett., 76 [19] 2668-70 (2000). https://doi.org/10.1063/1.126438
  20. D. Therriault, R. F. Shepherd, S. R. White, and J. A. Lewis, "Fugitive Inks for Direct-Write Assembly of Three-Dimensional Microvascular Networks," Adv. Mater., 17 [4] 395-99 (2005). https://doi.org/10.1002/adma.200400481
  21. A. J. Wang, S. L. Chen, P. Dong, C. T. Hu, and L. Sang, "Fabrication of Large-Area and High-Quality Colloidal Crystal Films on Nanocrystalline Porous Substrates by a Room Temperature Floating Self-Assembly Method," Thin Solid Films, 519 [6] 1798-802 (2011). https://doi.org/10.1016/j.tsf.2010.10.007
  22. S. B. Kim, S. Kim, S. S. Kwon, W. W. Lee, J. S. Kim, and W. I. Park, "Large-Scale Synthesis of Vertically Aligned ZnO Hexagonal Nanotube-Rod Hybrids Using a Two-Step Growth Method," J. Am. Ceram. Soc., 96 [11] 3500-3 (2013). https://doi.org/10.1111/jace.12507
  23. S. B. Kim, W. W. Lee, J. Yi, W. I. Park, J. S. Kim, and W. T. Nichols, "Simple, Large-Scale Patterning of Hydrophobic ZnO Nanorod Arrays," ACS Appl. Mater. Interfaces, 4 [8] 3910-15 (2012). https://doi.org/10.1021/am3007142
  24. Y. H. Ko, M. S. Kim, W. Park, and J. S. Yu, "Well-Integrated ZnO Nanorod Arrays on Conductive Textiles by Electrochemical Synthesis and Their Physical Properties," Nanoscale Res. Lett., 8 [1] 28 (2013). https://doi.org/10.1186/1556-276X-8-28
  25. Y. H. Ko, S. Kim, W. Park, and J. S. Yu, "Facile Fabrication of Forest-like ZnO Hierarchical Structures on Conductive Fabric Substrate," Phys. Status Solidi RRL, 6 [8] 355-57 (2012). https://doi.org/10.1002/pssr.201206265
  26. K. T. Park, F. Xia, S. W. Kim, S. B. Kim, T. Song, U. Paik, and W. I. Park, "Facile Synthesis of Ultrathin ZnO Nanotubes with Well-Organized Hexagonal Nanowalls and Sealed Layouts: Applications for Lithium Ion Battery Anodes," J. Phys. Chem. C, 117 [2] 1037-43 (2013). https://doi.org/10.1021/jp310428r
  27. J. Yi, J. Y. Kim, H. G. Jin, S. Song, C. Choi, W. T. Nichols, and W. I. Park, "Site-Specific Synthesis of ZnO Nanocrystalline Networks via a Hydrothermal Method," Met. Mater. Int., 18 [5] 845-49 (2012). https://doi.org/10.1007/s12540-012-5015-6
  28. D. Andeen, J. H. Kim, F. F. Lange, G. K. L. Goh, and S. Tripathy, "Lateral Epitaxial Overgrowth of ZnO in Water at 90 Degrees C," Adv. Funct. Mater., 16 [6] 799-804 (2006). https://doi.org/10.1002/adfm.200500817
  29. X. L. Cao, H. B. Zeng, M. Wang, X. J. Xu, M. Fang, S. L. Ji, and L. D. Zhang, "Large Scale Fabrication of Quasi-Aligned ZnO Stacking Nanoplates," J. Phys. Chem. C, 112 [14] 5267-70 (2008). https://doi.org/10.1021/jp800499r
  30. J. H. Joo, K. J. Greenberg, M. Baram, D. R. Clarke, and E. L. Hu, "Aqueous Epitaxial Growth of ZnO on Single Crystalline Au Microplates," Cryst. Growth Des., 13 [3] 986-91 (2013). https://doi.org/10.1021/cg301582a
  31. W. W. Lee, S. B. Kim, J. Yi, W. T. Nichols, and W. I. Park, "Surface Polarity-Dependent Cathodoluminescence in Hydrothermally Grown ZnO Hexagonal Rods," J. Phys. Chem. C, 116 [1] 456-60 (2012). https://doi.org/10.1021/jp209834d
  32. W. W. Lee, J. Yi, S. B. Kim, Y. H. Kim, H. G. Park, and W. I. Park, "Morphology-Controlled Three-Dimensional Nanoarchitectures Produced by Exploiting Vertical and In-Plane Crystallographic Orientations in Hydrothermal ZnO Crystals," Cryst. Growth Des., 11 [11] 4927-32 (2011). https://doi.org/10.1021/cg200806a
  33. Z. R. R. Tian, J. A. Voigt, J. Liu, B. McKenzie, M. J. McDermott, M. A. Rodriguez, H. Konishi, and H. F. Xu, "Complex and Oriented ZnO Nanostructures," Nat. Mater., 2 [12] 821-26 (2003). https://doi.org/10.1038/nmat1014
  34. J. M. Lee, Y. S. No, S. Kim, H. G. Park, and W. I. Park, "Strong Interactive Growth Behaviours in Solution-Phase Synthesis of Three-Dimensional Metal Oxide Nanostructures," Nat. Commun., 6 6325 (2015). https://doi.org/10.1038/ncomms7325
  35. W. W. Lee, S. Chang, D. W. Yang, J. M. Lee, H. G. Park, and W. I. Park, "Three-Dimensional Epitaxy of Single Crystalline Semiconductors by Polarity-Selective Multi-stage Growth," CrystEngComm, 18 [42] 8262-69 (2016). https://doi.org/10.1039/C6CE01897A
  36. D. W. Yang, D. Yoo, W. W. Lee, J. M. Lee, G. C. Yi, and W. I. Park, "Three-Dimensionally-Architectured GaN Light Emitting Crystals," CrystEngComm, 19 [15] 2007-12 (2017). https://doi.org/10.1039/C7CE00057J
  37. T. Song, J. W. Choung, J. G. Park, W. Il Park, J. A. Rogers, and U. Paik, "Surface Polarity and Shape-Controlled Synthesis of ZnO Nanostructures on GaN Thin Films Based on Catalyst-Free Metalorganic Vapor Phase Epitaxy," Adv. Mater., 20 [23] 4464-69 (2008). https://doi.org/10.1002/adma.200801190
  38. J. M. Lee, Y. B. Pyun, J. Yi, J. W. Choung, and W. I. Park, "ZnO Nanorod-Graphene Hybrid Architectures for Multifunctional Conductors," J. Phys. Chem. C, 113 [44] 19134-38 (2009). https://doi.org/10.1021/jp9078713
  39. N. Pan, X. P. Wang, M. Li, F. Q. Li, and J. G. Hou, "Strong Surface Effect on Cathodoluminescence of an Individual Tapered ZnO Nanorod," J. Phys. Chem. C, 111 [46] 17265-67 (2007). https://doi.org/10.1021/jp076708i
  40. I. Shalish, H. Temkin, and V. Narayanamurti, "Size-Dependent Surface Luminescence in ZnO Nanowires," Phys. Rev. B, 69 [24] 245401 (2004). https://doi.org/10.1103/PhysRevB.69.245401
  41. E. M. Wong, J. E. Bonevich, and P. C. Searson, "Growth Kinetics of Nanocrystalline ZnO Particles from Colloidal Suspensions," J. Phys. Chem. B, 102 [40] 7770-75 (1998). https://doi.org/10.1021/jp982397n
  42. S. Das, K. Dutta, and A. Pramanik, "Morphology Control of ZnO with Citrate: a Time and Concentration Dependent Mechanistic Insight," CrystEngComm, 15 [32] 6349-58 (2013). https://doi.org/10.1039/c3ce40822a
  43. J. H. Kim, D. Andeen, and F. F. Lange, "Hydrothermal Growth of Periodic, Single-Crystal ZnO Microrods and Microtunnels," Adv. Mater., 18 [18] 2453-57 (2006). https://doi.org/10.1002/adma.200600257
  44. J. H. Kim, E. M. Kim, D. Andeen, D. Thomson, S. P. Den-Baars, and F. F. Lange, "Growth of Heteroepitaxial ZnO Thin Films on GaN-Buffered $Al_2O_3$(0001) Substrates by Low-Temperature Hydrothermal Synthesis at 90 Degrees C," Adv. Funct. Mater., 17 [3] 463-71 (2007). https://doi.org/10.1002/adfm.200600103
  45. K. Chung, C. H. Lee, and G. C. Yi, "Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices," Science, 330 [6004] 655-57 (2010). https://doi.org/10.1126/science.1195403
  46. Y. Tchoe, C. H. Lee, J. B. Park, H. Baek, K. Chung, J. Jo, M. Kim, and G. C. Yi, "Microtube Light-Emitting Diode Arrays with Metal Cores," ACS Nano, 10 [3] 3114-20 (2016). https://doi.org/10.1021/acsnano.5b07905
  47. Y. Tchoe, J. Jo, M. Kim, J. Heo, G. Yoo, C. Sone, and G. C. Yi, "Variable-Color Light-Emitting Diodes Using GaN Microdonut Arrays," Adv. Mater., 26 [19] 3019-23 (2014). https://doi.org/10.1002/adma.201305684

Cited by

  1. Structural-phase surface composition of porous TiNi produced by SHS vol.6, pp.11, 2018, https://doi.org/10.1088/2053-1591/ab4e32