Browse > Article

Properties and Peculiar Features of Application of Isoelectronically Doped $A^2B^6$ Compound-Based Scintillators  

Ryzhikov, V. (Institute for Scintillation Materials, STC Institute for Single Crystals, National Academy of Science)
Starzhinskiy, N. (Institute for Scintillation Materials, STC Institute for Single Crystals, National Academy of Science)
Publication Information
Journal of Radiation Protection and Research / v.30, no.2, 2005 , pp. 77-84 More about this Journal
Abstract
The authors submit the data concerning the methods of obtaining semiconductor scintillators on the basis of the zinc chalcogenide crystal doped with impurities (Te, Cd, O, $Me^{III}-metals$ Al, In, etc.). Characteristics of such crystals and mechanisms for the semiconductor scintillator luminescence are described as well. The scintillator luminescence spectra maximums are located within the range 450-640nm, which depends on the method of preparing the scintillator. The luminescence decay time ranges within $0.5-10{\mu}s\;and\;30-150{\mu}s$. The afterglow level is less than 0.01% after $10-20{\mu}s$, and the radiation stability is ${\geq}5{\cdot}10^8$ rad. Thermostability of the output characteristics of new semiconductor scintillators on the basis of zinc selenide is prescribed by thermodynamic stability of the principal associative radiative recombination centers that come into existence due to the crystal lattice inherent imperfections. Certain application fields of the new scintillators are examined taking into account their particular qualities.
Keywords
$A^2B^6$ compounds; semiconductor sintillator; luminescene properties; radiation detectors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V.K.Bazhenov, V.l.Fistul, Fiz. tverdogo tela. 18, #8, 1345(1984)
2 E.G.Solov'eva, M.G.Mil'vidskiy, Fiz. i tehn. Poluprovodnikov. 17, #11, 2022(1983)
3 V.D.Ryzhikov, N.G.Starzhinskiy, L.P.-Galchinetskii, and V.I.Silin, Book of Abstracts of the European Material Conference E-MRS IUMRS ICEM 2000, Strasbourg (France), (May 30-June 2), 10 (2000)
4 AAAvdeenko, LP.Gal'chinetskii, V.D.-Ryzhikov, N.G.Starzhinskiy, Functional Materials. Kharkov, April-June, 7, #2, 224 (2000)
5 S.Kishida, K.Matsuura, H.Hagase et al., Phys. Stat. Sol. (a), 95, 155(1986)
6 M.Balcerzyk, W.Klamra, M.Moszyncki et al., In Proc. of the Fifth Intern. Conf. on Inorganic Scintillators and their Applications, Moscow, 571(2000)
7 D.D.Nedeoglo, A.V.Simashkevich, Shtinitsa, Kishinev, 149(1984)
8 J.Wotkins, Mir. Moskow, 221(1979)
9 V.D.Ryzhikov, N.G.Starzhinskiy, Ukr. fiz. zhurnal. 33, #6, 818(1988)
10 L.P.Gal'chinetskii, K.A.Katrunov, V.D.-Ryzhikov, RTEPTE, #1, 88(1991)
11 T.Batsch, B.Bengtson and MMoszynsky, Nucl. Instr. and Meth. 125, 443(1975)
12 A.A.Focsha, PAGashin, V.D.Ryzhikov, N.G.Starzhinskiy, L.P.Gal'chinetskii, VXSilin, Optical Materials. 213-217(2002)
13 L.P.Gal'chinetskii, KA.Katrunov, O.D.-Zelenskaya et al., Atomnaya energia. 5, #76, 28(1994)
14 L.V.Atroshchenko, S.F.Burachas, LP.Gal'-chinetskii, B.V. Grinyov, V.D. Ryzhikov, N.G.Starzhinskiy, Naukova Dumka. Kiev, 312(1998)
15 V.D.Ryzhikov, V.l.Silin and N.G.Starzhinskiy, Nucl. Traces Radiat. Meas. 2, #1, 53(1993)
16 U.N.Dmitriev, V.D.Ryzhikov, LP.Gal'-chinetskii, VNII monokristalov. Kharkov, 50 (1990)
17 V.D.Ryzhikov. NETEHIM. Moscow, 122 (1989)
18 V.D.Ryzhikov, E.F.Chaykovskiy, Izv. AN SSSR, Ser. Fiz., 43, 1150(1979)
19 M.K.Sheykman, N.E.Korsunskaya, Nauka. Moscow, 109(1986)
20 D.G.Thomas, Phys. Soc. Jap. (Suppl.). 21, 256(1966)
21 L.Pauling, Goskomizdat. Moscow, Leningrad, 320(1947)
22 N.K.Morozova, V.A.Kuznetsov, V.D.Ryzhikov. Nauka. Moscow, 96(1992)
23 V.D.Ryzhikov, N.G.Starzhinskiy, LP.Gal'-chinetskii, S.N.Galkin, and V.I.Silin, Funct. Materials. 7, # 2, 204(2000)
24 V.D.Ryzhikov, N.G.Starzhinskiy, V.M.Koshkin et al. Book of Abstracts of 2000 IEEE NSS-MIC Workshops, Lyon, France, 15-20 October(2000)
25 N.S.Rytova, Fiz. i tehn. Poluprovodnikov. 20, #8, 1514(1986)