• Title/Summary/Keyword: Semiconductor pressure sensor

Search Result 65, Processing Time 0.029 seconds

A Hybrid Bilayer Pressure Sensor based on Silver Nanowire (은 나노와이어 기반 하이브리드 이중층 압력 센서)

  • Lee, Jin-Young;Shin, Dong-Kyun;Kim, Ki-Eun;Seo, Yu-Seok;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.31-35
    • /
    • 2017
  • We have fabricated flexible and stretchable pressure sensors using silver nanowires (AgNWs) and analyzed their electric responses. AgNWs are spray coated directly onto uncured polydimethylsiloxane (PDMS) such that AgNWs penetrate into the uncured PDMS, enhancing the adhesion properties of AgNWs. However, the single-layered AgNW sensor exhibits unstable electric response and low pressure sensitivity. To tackle it, we have coated a conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) onto the AgNW layer. Such a hybrid bilayer sensor ensures a stable electric response because the over-coating layer of PEDOT:PSS effectively suppresses the protrusion of AgNWs from PDMS during release. To enhance the sensitivity further, we have also fabricated a stacked bilayer AgNW sensor. However, its electric response varies depending sensitively on the initial overlap pressure.

  • PDF

Comparison of the Characteristics of Metal Membrane Pressure Sensors Depending on the Shape of the Piezoresistive Patterns (금속 멤브레인 압력 센서에서 압저항체 패턴 형태에 따른 특성 비교)

  • Jun Park;Chang-Kyu Kim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.173-178
    • /
    • 2024
  • Development of pressure sensors for harsh environments with high pressure, humidity, and temperature is essential for many applications in the aerospace, marine, and automobile industries. However, existing materials such as polymers, adhesives, and semiconductors are not suitable for these conditions and require materials that are less sensitive to the external environment. This study proposed a pressure sensor that could withstand harsh environments and had high durability and precision. The sensor comprised a piezoresistor pattern and an insulating film directly formed on a stainless-steel membrane. To achieve the highest sensitivity, a pattern design method was proposed that considered the stress distribution in a circular membrane using finite element analysis. The manufacturing process involved depositing and etching a dielectric insulating film and metal piezoresistive material, resulting in a device with high linearity and slight hysteresis in the range of a maximum of 40 atm. The simplicity and effectiveness of this sensor render it a promising candidate for various applications in extreme environments.

Fabrication of a Pressure Difference Type Gas Flow Sensor using ICP-RIE Technology (ICP-RIE 기술을 이용한 차압형 가스유량센서 제작)

  • Lee, Young-Tae;Ahn, Kang-Ho;Kwon, Yong-Taek;Takao, Hidekuni;Ishida, Makoto
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • In this paper, we fabricated pressure difference type gas flow sensor using only dry etching technology by ICP-RIE(inductive coupled plasma reactive ion etching). The sensor's structure consists of a common shear stress type piezoresistive pressure sensor with an orifice fabricated in the middle of the sensor diaphragm. Generally, structure like diaphragm is fabricated by wet etching technology using TMAH, but we fabricated diaphragm by only dry etching using ICP-RIE. To equalize the thickness of diaphragm we applied insulator($SiO_2$) layer of SOI(Si/$SiO_2$/Si-sub) wafer as delay layer of dry etching. Size of fabricated diaphragm is $1000{\times}1000{\times}7\;{\mu}m^3$ and overall chip $3000{\times}3000{\times}7\;{\mu}m^3$. We measured the variation of output voltage toward the change of gas pressure to analyze characteristics of the fabricated sensor. Sensitivity of fabricated sensor was relatively high as about 1.5mV/V kPa at 1kPa full-scale. Nonlinearity was below 0.5%F.S. Over-pressure range of the fabricated sensor is 100kPa or more.

  • PDF

A Study on Temperature Compensation of Silicon Piezoresistive Pressure Sensor (실리콘 저항형 압력센서의 온도 보상에 관한 연구)

  • 최시영;박상준;김우정;정광화;김국진
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.563-570
    • /
    • 1990
  • A silicon pressure sensor made of a full bridge of diffused resistors was designed and fabricated using semiconductor integrated circuit process. Thin diaphragms with 30\ulcorner thickness were obtained using anisotropic wet chemical etching technique. Our device showed strong temperature dependence. Compensation networks are used to compensate for the temperature dependence of the pressure sensor. The bridge supply voltage having positive temperature coefficient by compensation networks was utilized against the negative temperature coefficient of bridge output voltage. The sensitivity fluctuation of pressure sensor before temperature compensation was -1700 ppm/\ulcorner, while it reduced to -710ppm\ulcorner with temperature compensation. Our result shows that the we could develop accurate and reliable pressure sensor over a wide temperature range(-20\ulcorner~50\ulcorner).

  • PDF

Development of miniature weight sensor using piezoresistive pressure sensor (압저항형 압력센서를 이용한 초소형 하중센서의 개발)

  • Kim, Woo-Jeong;Cho, Yong-Soo;Kang, Hyun-Jae;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.237-243
    • /
    • 2005
  • Strain gauge type load cell is used widely as weight sensor. However, it has problems such as noise, power consumption, high cost and big size. Semiconductor type piezoresistive pressure sensor is practically used in recent for low hysteresis, good linearity, small size, light weight and strong on vibration. In this paper, we have fabricated the piezoresistive pressure sensor and packaged the miniature weight sensor. We packaged the miniature weight sensor by flip-chip bonding between die and PCB for durability, because the weight sensor is directly contacted on a physical solid distinct from air and oil pressure. We measured the characteristics of the weight sensor, which had the output of $10{\sim}80$ mV on the weight range of $0{\sim}2$ kg. In the result, we could fabricate the weight sensor with an accuracy of 3 %FSO linearity.

Sandwich-structured High-sensitivity Resistive Pressure Sensor based on Silver Nanowire (샌드위치 구조를 갖는 은 나노와이어 기반 고감도 저항성 압력 센서)

  • Lee, Jinyoung;Kim, Gieun;Shin, Dongkyun;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.1-5
    • /
    • 2018
  • Elastic resistive pressure sensor is fabricated by a direct spray coating of silver nanowires (AgNWs) on uncured polydimethylsiloxane (PDMS) and an additional coating of a conductive polymer, poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS). To improve the sensitive and stability, we have fabricated sandwich-structured AgNW/polymer sensor where two AgNW/polymer-coated PDMS films are laminated with the conducting surfaces contacted by pressure lamination. It shows a resistance decrease upon loading due to the formation of dense network of AgNWs. It is demonstrated that the sandwich-structured AgNW/polymer sensor exhibits very high sensitivity ($2.59kPa^{-1}$) and gauge factor (37.8) in the low pressure regime. It can also detect a subtle placement and removal of a weight as low as 3.4 mg, the corresponding pressure of which is about 5.4 Pa. It is shown that the protrusion of AgNWs from PDMS is suppressed substantially by the over-coated PEDOT:PSS layer, thereby reducing hysteresis and rendering the sensor more stable.

Contact Pressure Distribution Measurement of PVA Brush for Post CMP Cleaning (CMP 후 세정용 PVA 브러쉬의 접촉압력 분포 측정)

  • Ryu, Sun-Joong;Kim, Doeg Jung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.73-78
    • /
    • 2016
  • Contact pressure distribution between PVA brush and semiconductor wafer was measured by developing a test setup which could simulates the post CMP cleaning process. The test set-up used thin film type pressure sensor which could measure the pressure distribution of contact area with the resolution of $15.5ea/cm^2$. As the experimental results, it was verified that there had been severe contact pressure non-uniformity along the axis of the brush and between the adjacent projections on the brush's surface. These results should be considered when developing post CMP cleaning stage or designing the PVA brush.

Controller for Gas Leakage Protection in Semiconductor Process Chamber (반도체 제조장비용 챔버 가스누출 방지를 위한 제어모듈 개발)

  • Park Sung-Jin;Lee Eui-Yong;Sul Yong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.5
    • /
    • pp.373-377
    • /
    • 2005
  • In this paper the gas leakage controller in processing chamber for semiconductor manufacturing is proposed. A pressure sensor is connected between the final valve and the numeric valve. A pressure sensor signal and a numeric valve signal are controlled by a proposed digital circuit module. Gas leakage condition, producing by 2nd plasticity in semiconductor process, display at LED. The proposed controller module is useful for monitoring the gas flow for preventing the critical process gas leakage.

  • PDF

Fabrication and Characteristics of Parylene Coated Isolated Type Pressure Sensor (파릴렌 막이 증착된 봉입형 압력센서의 제작 및 그 특성)

  • 김우정;조용수;김홍균;최시영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.2
    • /
    • pp.81-86
    • /
    • 2003
  • To measure the pressure using semiconductor type pressure sensor in water or chemical solution, the sensor must be protected from the solution using proper packaging materials. stainless steel isolated type pressure sensor packaged with SUS316 can be widely used to measure the pressure in water or chemical due to its high corrosion-resistance and good performance in tensility and welding. Even if the surface of SUS316 has a plenty of nickel and chromium, the SUS316 is highly corrosive in acidic or alkaline solution. We coated parylene and adhesion promoting copper layer are 5${\mu}{\textrm}{m}$ and 200nm, respectively. The parylene coated stainless steel pressure sensor showed good anti-corosive characteristics in various strong acids. The accuracy of pressure sensor wasn't varied after parylene coating with 0.5%FSO.

Fabrication and yield improvement of oxide semiconductor thin film gas sensor array (산화물 반도체 박막 가스센서 어레이의 제조 및 수율 개선)

  • 이규정;류광렬;허창우
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.315-322
    • /
    • 2002
  • A thin film oxide semiconductor micro gas sensor array which shows only 60㎽ of power consumption at an operating temperature of 30$0^{\circ}C$ has been fabricated using microfabrication and rnicrornachining techniques. Excellent thermal insulation of the membrane is achieved by the use of a double la! or structure of 0.1${\mu}{\textrm}{m}$ thick Si$_3$N$_4$ and 1${\mu}{\textrm}{m}$ thick phosphosilicate glass(PSG) prepared by low pressure chemical vapor deposition(LPCVD) and atmospheric-pressure chemical-vapor deposition(APCVD), respectively. The sensor way consists of such thin film oxide semiconductor sensing materials as 1wt.% Pd-doped SnO$_2$, 6wt.% AI$_2$O$_3$-doped ZnO, WO$_3$ and ZnO. The thin film oxide semiconductor micro gas sensor array exhibited resistance changes usable for subsequent data processing upon exposure to various gases and the sensitivity strongly depended on the sensing layer materials. Heater Part of the sensor structure has been modified in order to improve the process yield of the sensor, and as a result of modified heater structure improved process yield has been achieved.